
The Ten Most Critical API Security Risks

 TOC Table of Contents

Table of Contents
 TOC Table of Contents...2
 FW Foreword...3
 I Introduction..4
 RN Release Notes...5
 RISK API Security Risk...6
 T10 OWASP API Security Top 10 - 2019..................7
 API1:2019 Broken Object Level Authorization.........8
 API2:2019 Broken User Authentication...................10
 API3:2019 Excessive Data Exposure.......................12
 API4:2019 Lack of Resources & Rate Limiting......14
 API5:2019 Broken Function Level Authorization. . .16
 API6:2019 Mass Assignment...................................18
 API7:2019 Security Misconfiguration.....................20
 API8:2019 Injection...22
 API9:2019 Improper Assets Management................24
 API10:2019 Insufficient Logging & Monitoring.....26
 +D What’s Next for Developers...............................28
 +DSO What’s Next for DevSecOps.........................29
 +DAT Methodology and Data..................................30
 +ACK Acknowledgments..31

About OWASP
The Open Web Application Security Project
(OWASP) is an open community dedicated to
enabling organizations to develop, purchase, and
maintain applications and APIs that can be trusted.

At OWASP, you'll find free and open:

• Application security tools and standards.
• Complete books on application security

testing, secure code development, and secure
code review.

• Presentations and videos.
• Cheat sheets on many common topics.
• Standard security controls and libraries.
• Local chapters worldwide .
• Cutting edge research.
• Extensive conferences worldwide.
• Mailing lists .

Learn more at: https://www.owasp.org.

All OWASP tools, documents, videos, presentations,
and chapters are free and open to anyone interested in
improving application security.

We advocate approaching application security as a
people, process, and technology problem because the
most effective approaches to application security
require improvements in these areas.

OWASP is a new kind of organization. Our freedom
from commercial pressures allows us to provide
unbiased, practical, and cost-effective information
about application security.

OWASP is not affiliated with any technology
company, although we support the informed use of
commercial security technology. OWASP produces
many types of materials in a collaborative,
transparent, and open way.

The OWASP Foundation is the non-profit entity that
ensures the project's long-term success. Almost
everyone associated with OWASP is a volunteer,
including the OWASP board, chapter leaders, project
leaders, and project members.

We support innovative security research with grants
and infrastructure.

Come join us!

https://owasp.org This work is licensed under a
Creative Commons Attribution ShareAlike 4.0 International License

https://owasp.org/
https://owasp.org/
https://lists.owasp.org/mailman/listinfo
https://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
https://www.owasp.org/index.php/OWASP_Chapter
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.youtube.com/user/OWASPGLOBAL
https://creativecommons.org/licenses/by-sa/4.0/

 FW Foreword

A foundational element of innovation in today’s app-driven world is the Application Programming Interface
(API). From banks, retail, and transportation to IoT, autonomous vehicles, and smart cities, APIs are a critical
part of modern mobile, SaaS, and web applications and can be found in customer-facing, partner-facing, and
internal applications.

By nature, APIs expose application logic and sensitive data such as Personally Identifiable Information (PII)
and because of this, APIs have increasingly become a target for attackers. Without secure APIs, rapid
innovation would be impossible.

Although a broader web application security risks Top 10 still makes sense, due to their particular nature, an
API-specific security risks list is required. API security focuses on strategies and solutions to understand and
mitigate the unique vulnerabilities and security risks associated with APIs.

If you're familiar with the OWASP Top 10 Project, then you'll notice the similarities between both documents:
they are intended for readability and adoption. If you're new to the OWASP Top 10 series, you may be better off
reading the API Security Risks and Methodology and Data sections before jumping into the Top 10 list.

You can contribute to OWASP API Security Top 10 with your questions, comments, and ideas at our GitHub
project repository:

• https://github.com/OWASP/API-Security/issues
• https://github.com/OWASP/API-Security/blob/master/CONTRIBUTING.md

You can find the OWASP API Security Top 10 here:

• https://www.owasp.org/index.php/OWASP_API_Security_Project
• https://github.com/OWASP/API-Security

We wish to thank all the contributors who made this project possible with their effort and contributions. They
are all listed in the Acknowledgments section. Thank you!

https://github.com/OWASP/API-Security
https://www.owasp.org/index.php/OWASP_API_Security_Project
https://github.com/OWASP/API-Security/blob/master/CONTRIBUTING.md
https://github.com/OWASP/API-Security/issues
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

 I Introduction

Welcome to the OWASP API Security Top 10 - 2019!
Welcome to the first edition of the OWASP API Security Top 10. If you're familiar with the OWASP Top 10
series, you'll notice the similarities: they are intended for readability and adoption. Otherwise, consider visiting
the OWASP API Security Project wiki page, before digging deeper into the most critical API security risks.

APIs play a very important role in modern applications' architecture. Since creating security awareness and
innovation have different paces, it's important to focus on common API security weaknesses.

The primary goal of the OWASP API Security Top 10 is to educate those involved in API development and
maintenance, for example, developers, designers, architects, managers, or organizations.

In the Methodology and Data section, you can read more about how this first edition was created. In future
versions, we want to involve the security industry, with a public call for data. For now, we encourage everyone
to contribute with questions, comments and ideas at our GitHub repository or Mailing list.

https://groups.google.com/a/owasp.org/forum/#!forum/api-security-project
https://github.com/OWASP/API-Security
https://www.owasp.org/index.php/OWASP_API_Security_Project

 RN Release Notes

This is the first OWASP API Security Top 10 edition, which we plan to be updated periodically, every three or
four years.

Unlike this version, in future versions, we want to make a public call for data, involving the security industry in
this effort. In the Methodology and Data section, you'll find more details about how this version was built. For
more details about the security risks, please refer to the API Security Risks section.

It is important to realize that over the last few years, architecture of applications has significantly changed.
Currently, APIs play a very important role in this new architecture of microservices, Single Page Applications
(SPAs), mobile apps, IoT, etc.

The OWASP API Security Top 10 was a required effort to create awareness about modern API security issues. It
was only possible due to a great effort of several volunteers, all of them listed in the Acknowledgments section.
Thank you!

 RISK API Security Risk
The OWASP Risk Rating Methodology was used to do the risk analysis.

The table below summarizes the terminology associated with the risk score.

Threat Agents Exploitability Weakness
Prevalence

Weakness
Detectability

Technical
Impact

Business
Impacts

API Specific

Easy: 3 Widespread 3 Easy 3 Severe 3
Business
SpecificAverage: 2 Common 2 Average 2 Moderate 2

Difficult: 1 Difficult 1 Difficult 1 Minor 1

Note: This approach does not take the likelihood of the threat agent into account. Nor does it account for any of
the various technical details associated with your particular application. Any of these factors could significantly
affect the overall likelihood of an attacker finding and exploiting a particular vulnerability. This rating does not
take into account the actual impact on your business. Your organization will have to decide how much security
risk from applications and APIs the organization is willing to accept given your culture, industry, and regulatory
environment. The purpose of the OWASP API Security Top 10 is not to do this risk analysis for you.

References

OWASP
• OWASP Risk Rating Methodology

• Article on Threat/Risk Modeling

External
• ISO 31000: Risk Management Std
• ISO 27001: ISMS
• NIST Cyber Framework (US)
• ASD Strategic Mitigations (AU)
• NIST CVSS 3.0
• Microsoft Threat Modeling Tool

https://www.microsoft.com/en-us/download/details.aspx?id=49168
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://www.asd.gov.au/infosec/mitigationstrategies.htm
https://www.nist.gov/cyberframework
https://www.iso.org/isoiec-27001-information-security.html
https://www.iso.org/iso-31000-risk-management.html
https://www.owasp.org/index.php/Threat_Risk_Modeling
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

 T10 OWASP API Security Top 10 - 2019
API1:2019 - Broken Object Level Authorization APIs tend to expose endpoints that handle object identifiers,

creating a wide attack surface Level Access Control issue. Object
level authorization checks should be considered in every function
that accesses a data source using an input from the user.

API2:2019 - Broken User Authentication Authentication mechanisms are often implemented incorrectly,
allowing attackers to compromise authentication tokens or to
exploit implementation flaws to assume other user's identities
temporarily or permanently. Compromising system's ability to
identify the client/user, compromises API security overall.

API3:2019 - Excessive Data Exposure Looking forward to generic implementations, developers tend to
expose all object properties without considering their individual
sensitivity, relying on clients to perform the data filtering before
displaying it to the user.

API4:2019 - Lack of Resources & Rate Limiting Quite often, APIs do not impose any restrictions on the size or
number of resources that can be requested by the client/user. Not
only can this impact the API server performance, leading to
Denial of Service (DoS), but also leaves the door open to
authentication flaws such as brute force.

API5:2019 - Broken Function Level
Authorization

Complex access control policies with different hierarchies,
groups, and roles, and an unclear separation between
administrative and regular functions, tend to lead to authorization
flaws. By exploiting these issues, attackers gain access to other
users’ resources and/or administrative functions.

API6:2019 - Mass Assignment Binding client provided data (e.g., JSON) to data models, without
proper properties filtering based on a whitelist, usually lead to
Mass Assignment. Either guessing objects properties, exploring
other API endpoints, reading the documentation, or providing
additional object properties in request payloads, allows attackers
to modify object properties they are not supposed to.

API7:2019 - Security Misconfiguration Security misconfiguration is commonly a result of unsecure
default configurations, incomplete or ad-hoc configurations, open
cloud storage, misconfigured HTTP headers, unnecessary HTTP
methods, permissive Cross-Origin resource sharing (CORS), and
verbose error messages containing sensitive information.

API8:2019 - Injection Injection flaws, such as SQL, NoSQL, Command Injection, etc.,
occur when untrusted data is sent to an interpreter as part of a
command or query. The attacker's malicious data can trick the
interpreter into executing unintended commands or accessing data
without proper authorization.

API9:2019 - Improper Assets Management APIs tend to expose more endpoints than traditional web
applications, making proper and updated documentation highly
important. Proper hosts and deployed API versions inventory also
play an important role to mitigate issues such as deprecated API
versions and exposed debug endpoints.

API10:2019 - Insufficient Logging & Monitoring Insufficient logging and monitoring, coupled with missing or
ineffective integration with incident response, allows attackers to
further attack systems, maintain persistence, pivot to more
systems to tamper with, extract, or destroy data. Most breach
studies demonstrate the time to detect a breach is over 200 days,
typically detected by external parties rather than internal
processes or monitoring.

 API1:2019 Broken Object Level Authorization

API Specific Exploitability: 3 Prevalence: 3 Detectability: 2 Technical: 3 Business Specific
Attackers can exploit API
endpoints that are vulnerable to
broken object level authorization
by manipulating the ID of an
object that is sent within the
request. This may lead to
unauthorized access to sensitive
data. This issue is extremely
common in API-based
applications because the server
component usually does not fully
track the client’s state, and
instead, relies more on
parameters like object IDs, that
are sent from the client to decide
which objects to access.

This has been the most common and
impactful attack on APIs. Authorization and
access control mechanisms in modern
applications are complex and wide-spread.
Even if the application implements a proper
infrastructure for authorization checks,
developers might forget to use these checks
before accessing a sensitive object. Access
control detection is not typically amenable
to automated static or dynamic testing.

Unauthorized access can result
in data disclosure to
unauthorized parties, data loss,
or data manipulation.
Unauthorized access to objects
can also lead to full account
takeover.

Is The API Vulnerable?
Object level authorization is an access control mechanism that is usually implemented at the code level to
validate that one user can only access objects that they should have access to.

Every API endpoint that receives an ID of an object, and performs any type of action on the object, should
implement object level authorization checks. The checks should validate that the logged-in user does have
access to perform the requested action on the requested object.

Failures in this mechanism typically leads to unauthorized information disclosure, modification, or destruction
of all data.

Example Attack Scenarios

Scenario #1
An e-commerce platform for online stores (shops) provides a listing page with the revenue charts for their
hosted shops. Inspecting the browser requests, an attacker can identify the API endpoints used as a data source
for those charts and their pattern /shops/{shopName}/revenue_data.json. Using another API
endpoint, the attacker can get the list of all hosted shop names. With a simple script to manipulate the names in
the list, replacing {shopName} in the URL, the attacker gains access to the sales data of thousands of e-
commerce stores.

Scenario #2
While monitoring the network traffic of a wearable device, the following HTTP PATCH request gets the
attention of an attacker due to the presence of a custom HTTP request header X-User-Id: 54796.
Replacing the X-User-Id value with 54795, the attacker receives a successful HTTP response, and is able to
modify other users' account data.

Impacts
Threat
Agents

Attack
Vectors

 Security
 Weakness

 API1:2019 Broken Object Level Authorization

How To Prevent
• Implement a proper authorization mechanism that relies on the user policies and hierarchy.
• Use an authorization mechanism to check if the logged-in user has access to perform the requested

action on the record in every function that uses an input from the client to access a record in the
database.

• Prefer to use random and unpredictable values as GUIDs for records’ IDs.
• Write tests to evaluate the authorization mechanism. Do not deploy vulnerable changes that break the

tests.

References

External
• CWE-284: Improper Access Control
• CWE-285: Improper Authorization
• CWE-639: Authorization Bypass Through User-Controlled Key

https://cwe.mitre.org/data/definitions/639.html
https://cwe.mitre.org/data/definitions/285.html
https://cwe.mitre.org/data/definitions/284.html

 API2:2019 Broken User Authentication

API Specific Exploitability: 3 Prevalence: 2 Detectability: 2 Technical: 3 Business Specific
Authentication in APIs is a
complex and confusing
mechanism. Software and
security engineers might have
misconceptions about what are
the boundaries of authentication
and how to implement it
correctly. In addition, the
authentication mechanism is an
easy target for attackers, since it’s
exposed to everyone. These two
points makes the authentication
component potentially vulnerable
to many exploits.

There are two sub-issues: 1. Lack of
protection mechanisms: APIs endpoints that
are responsible for authentication must be
treated differently from regular endpoints
and implement extra layers of protection 2.
Misimplementation of the mechanism: The
mechanism is used / implemented without
considering the attack vectors, or it’s the
wrong use case (e.g., an authentication
mechanism designed for IoT clients might
not be the right choice for web
applications).

Attackers can gain control to
other users’ accounts in the
system, read their personal
data, and perform sensitive
actions on their behalf, like
money transactions and
sending personal messages.

Is the API Vulnerable?
Authentication endpoints and flows are assets that need to be protected. “Forgot password / reset password”
should be treated the same way as authentication mechanisms.

An API is vulnerable if it:

• Permits credential stuffing whereby the attacker has a list of valid usernames and passwords.
• Permits attackers to perform a brute force attack on the same user account, without presenting

captcha/account lockout mechanism.
• Permits weak passwords.
• Sends sensitive authentication details, such as auth tokens and passwords in the URL.
• Doesn’t validate the authenticity of tokens.
• Accepts unsigned/weakly signed JWT tokens ("alg":"none")/doesn’t validate their expiration date.
• Uses plain text, non-encrypted, or weakly hashed passwords.
• Uses weak encryption keys.

Example Attack Scenarios

Scenario #1
Credential stuffing (using lists of known usernames/passwords), is a common attack. If an application does not
implement automated threat or credential stuffing protections, the application can be used as a password oracle
(tester) to determine if the credentials are valid.

Scenario #2
An attacker starts the password recovery workflow by issuing a POST request to
/api/system/verification-codes and by providing the username in the request body. Next an SMS
token with 6 digits is sent to the victim’s phone. Because the API does not implement a rate limiting policy, the
attacker can test all possible combinations using a multi-threaded script, against the
/api/system/verification-codes/{smsToken} endpoint to discover the right token within a few
minutes.

Impacts
Threat
Agents

Attack
Vectors

 Security
 Weakness

https://github.com/danielmiessler/SecLists
https://www.owasp.org/index.php/Credential_stuffing
https://www.owasp.org/index.php/Credential_stuffing

 API2:2019 Broken User Authentication

How To Prevent
• Make sure you know all the possible flows to authenticate to the API (mobile/ web/deep links that

implement one-click authentication/etc.)

• Ask your engineers what flows you missed.
• Read about your authentication mechanisms. Make sure you understand what and how they are used.

OAuth is not authentication, and neither is API keys.
• Don't reinvent the wheel in authentication, token generation, password storage. Use the standards.
• Credential recovery/forget password endpoints should be treated as login endpoints in terms of brute

force, rate limiting, and lockout protections.
• Use the OWASP Authentication Cheatsheet.
• Where possible, implement multi-factor authentication.
• Implement anti brute force mechanisms to mitigate credential stuffing, dictionary attack, and brute force

attacks on your authentication endpoints. This mechanism should be stricter than the regular rate
limiting mechanism on your API.

• Implement account lockout / captcha mechanism to prevent brute force against specific users.
Implement weak-password checks.

• API keys should not be used for user authentication, but for client app/project authentication.

References

OWASP
• OWASP Key Management Cheat Sheet

• OWASP Authentication Cheatsheet

• Credential Stuffing

External
• CWE-798: Use of Hard-coded Credentials

https://cwe.mitre.org/data/definitions/798.html
https://www.owasp.org/index.php/Credential_stuffing
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://www.owasp.org/index.php/Key_Management_Cheat_Sheet
https://cloud.google.com/endpoints/docs/openapi/when-why-api-key
https://www.owasp.org/index.php/Testing_for_Weak_lock_out_mechanism_(OTG-AUTHN-003)
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html

 API3:2019 Excessive Data Exposure

API Specific Exploitability: 3 Prevalence: 2 Detectability: 2 Technical: 2 Business Specific
Exploitation of Excessive Data
Exposure is simple, and is usually
performed by sniffing the traffic
to analyze the API responses,
looking for sensitive data
exposure that should not be
returned to the user.

APIs rely on clients to perform the data
filtering. Since APIs are used as data
sources, sometimes developers try to
implement them in a generic way without
thinking about the sensitivity of the
exposed data. Automatic tools usually can’t
detect this type of vulnerability because it’s
hard to differentiate between legitimate
data returned from the API, and sensitive
data that should not be returned without a
deep understanding of the application.

Excessive Data Exposure
commonly leads to exposure of
sensitive data.

Is the API Vulnerable?
The API returns sensitive data to the client by design. This data is usually filtered on the client side before being
presented to the user. An attacker can easily sniff the traffic and see the sensitive data.

Example Attack Scenarios

Scenario #1
The mobile team uses the /api/articles/{articleId}/comments/{commentId} endpoint in the
articles view to render comments metadata. Sniffing the mobile application traffic, an attacker finds out that
other sensitive data related to comment’s author is also returned. The endpoint implementation uses a generic
toJSON() method on the User model, which contains PII, to serialize the object.

Scenario #2
An IOT-based surveillance system allows administrators to create users with different permissions. An admin
created a user account for a new security guard that should only have access to specific buildings on the site.
Once the security guard uses his mobile app, an API call is triggered to: /api/sites/111/cameras in
order to receive data about the available cameras and show them on the dashboard. The response contains a list
with details about cameras in the following format: {"id":"xxx","live_access_token":"xxxx-
bbbbb","building_id":"yyy"}. While the client GUI shows only cameras which the security guard
should have access to, the actual API response contains a full list of all the cameras in the site.

Impacts
Threat
Agents

Attack
Vectors

 Security
 Weakness

 API3:2019 Excessive Data Exposure

How To Prevent
• Never rely on the client side to filter sensitive data.

• Review the responses from the API to make sure they contain only legitimate data.

• Backend engineers should always ask themselves "who is the consumer of the data?" before exposing a
new API endpoint.

• Avoid using generic methods such as to_json() and to_string(). Instead, cherry-pick specific
properties you really want to return.

• Classify sensitive and personally identifiable information (PII) that your application stores and works
with, reviewing all API calls returning such information to see if these responses pose a security issue.

• Implement a schema-based response validation mechanism as an extra layer of security. As part of this
mechanism define and enforce data returned by all API methods, including errors.

References

External
• CWE-213: Intentional Information Exposure

https://cwe.mitre.org/data/definitions/213.html

 API4:2019 Lack of Resources & Rate Limiting

API Specific Exploitability: 2 Prevalence: 3 Detectability: 3 Technical: 2 Business Specific
Exploitation requires simple API
requests. No authentication is
required. Multiple concurrent
requests can be performed from a
single local computer or by using
cloud computing resources.

It’s common to find APIs that do not
implement rate limiting or APIs where
limits are not properly set.

Exploitation may lead to DoS,
making the API unresponsive
or even unavailable.

Is the API Vulnerable?
API requests consume resources such as network, CPU, memory, and storage. The amount of resources
required to satisfy a request greatly depends on the user input and endpoint business logic. Also, consider the
fact that requests from multiple API clients compete for resources. An API is vulnerable if at least one of the
following limits is missing or set inappropriately (e.g., too low/high):

• Execution timeouts
• Max allocable memory
• Number of file descriptors
• Number of processes
• Request payload size (e.g., uploads)
• Number of requests per client/resource
• Number of records per page to return in a single request response

Example Attack Scenarios

Scenario #1
An attacker uploads a large image by issuing a POST request to /api/v1/images. When the upload is
complete, the API creates multiple thumbnails with different sizes. Due to the size of the uploaded image,
available memory is exhausted during the creation of thumbnails and the API becomes unresponsive.

Scenario #2
We have an application that contains the users' list on a UI with a limit of 200 users per page. The users' list is
retrieved from the server using the following query: /api/users?page=1&size=200. An attacker
changes the size parameter to 200 000, causing performance issues on the database. Meanwhile, the API
becomes unresponsive and is unable to handle further requests from this or any other clients (aka DoS).

The same scenario might be used to provoke Integer Overflow or Buffer Overflow errors.

Impacts
Threat
Agents

Attack
Vectors

 Security
 Weakness

 API4:2019 Lack of Resources & Rate Limiting

How To Prevent
• Docker makes it easy to limit memory, CPU, number of restarts, file descriptors, and processes.
• Implement a limit on how often a client can call the API within a defined timeframe.
• Notify the client when the limit is exceeded by providing the limit number and the time at which the

limit will be reset.
• Add proper server-side validation for query string and request body parameters, specifically the one that

controls the number of records to be returned in the response.
• Define and enforce maximum size of data on all incoming parameters and payloads such as maximum

length for strings and maximum number of elements in arrays.

References

OWASP
• Blocking Brute Force Attacks
• Docker Cheat Sheet - Limit resources (memory, CPU, file descriptors, processes, restarts)
• REST Assessment Cheat Sheet

External
• CWE-307: Improper Restriction of Excessive Authentication Attempts
• CWE-770: Allocation of Resources Without Limits or Throttling
• “Rate Limiting (Throttling)” - Security Strategies for Microservices-based Application Systems, NIST

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204-draft.pdf
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/307.html
https://github.com/OWASP/CheatSheetSeries/blob/3a8134d792528a775142471b1cb14433b4fda3fb/cheatsheets/REST_Assessment_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/3a8134d792528a775142471b1cb14433b4fda3fb/cheatsheets/Docker_Security_Cheat_Sheet.md#rule-7---limit-resources-memory-cpu-file-descriptors-processes-restarts
https://www.owasp.org/index.php/Blocking_Brute_Force_Attacks
https://docs.docker.com/engine/reference/commandline/run/#set-ulimits-in-container---ulimit
https://docs.docker.com/engine/reference/commandline/run/#restart-policies---restart
https://docs.docker.com/config/containers/resource_constraints/#cpu
https://docs.docker.com/config/containers/resource_constraints/#memory

 API5:2019 Broken Function Level Authorization

API Specific Exploitability: 3 Prevalence: 2 Detectability: 1 Technical: 2 Business Specific
Exploitation requires the attacker
to send legitimate API calls to the
API endpoint that they should not
have access to. These endpoints
might be exposed to anonymous
users or regular, non-privileged
users. It’s easier to discover these
flaws in APIs since APIs are
more structured, and the way to
access certain functions is more
predictable (e.g., replacing the
HTTP method from GET to PUT,
or changing the “users” string in
the URL to "admins").

Authorization checks for a function or
resource are usually managed via
configuration, and sometimes at the code
level. Implementing proper checks can be a
confusing task, since modern applications
can contain many types of roles or groups
and complex user hierarchy (e.g., sub-users,
users with more than one role).

Such flaws allow attackers to
access unauthorized
functionality. Administrative
functions are key targets for
this type of attack.

Is the API Vulnerable?
The best way to find broken function level authorization issues is to perform deep analysis of the authorization
mechanism, while keeping in mind the user hierarchy, different roles or groups in the application, and asking
the following questions:

• Can a regular user access administrative endpoints?
• Can a user perform sensitive actions (e.g., creation, modification, or erasure) that they should not have

access to by simply changing the HTTP method (e.g., from GET to DELETE)?
• Can a user from group X access a function that should be exposed only to users from group Y, by simply

guessing the endpoint URL and parameters (e.g., /api/v1/users/export_all)?

Don’t assume that an API endpoint is regular or administrative only based on the URL path.

While developers might choose to expose most of the administrative endpoints under a specific relative path,
like api/admins, it’s very common to find these administrative endpoints under other relative paths together
with regular endpoints, like api/users.

Example Attack Scenarios

Scenario #1
During the registration process to an application that allows only invited users to join, the mobile application
triggers an API call to GET /api/invites/{invite_guid}. The response contains a JSON with details
about the invite, including the user’s role and the user’s email.

An attacker duplicated the request and manipulated the HTTP method and endpoint to POST
/api/invites/new. This endpoint should only be accessed by administrators using the admin console,
which does not implement function level authorization checks.

The attacker exploits the issue and sends himself an invite to create an admin account:

POST /api/invites/new
{“email”:”hugo@malicious.com”,”role”:”admin”}

Impacts
Threat
Agents

Attack
Vectors

 Security
 Weakness

 API5:2019 Broken Function Level Authorization
Scenario #2
An API contains an endpoint that should be exposed only to administrators - GET
/api/admin/v1/users/all. This endpoint returns the details of all the users of the application and does
not implement function-level authorization checks. An attacker who learned the API structure takes an educated
guess and manages to access this endpoint, which exposes sensitive details of the users of the application.

How To Prevent
Your application should have a consistent and easy to analyze authorization module that is invoked from all
your business functions. Frequently, such protection is provided by one or more components external to the
application code.

• The enforcement mechanism(s) should deny all access by default, requiring explicit grants to specific
roles for access to every function.

• Review your API endpoints against function level authorization flaws, while keeping in mind the
business logic of the application and groups hierarchy.

• Make sure that all of your administrative controllers inherit from an administrative abstract controller
that implements authorization checks based on the user’s group/role.

• Make sure that administrative functions inside a regular controller implements authorization checks
based on the user’s group and role.

References

OWASP
• OWASP Article on Forced Browsing

• OWASP Top 10 2013-A7-Missing Function Level Access Control

• OWASP Development Guide: Chapter on Authorization

External
• CWE-285: Improper Authorization

https://cwe.mitre.org/data/definitions/285.html
https://www.owasp.org/index.php/Category:Access_Control
https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://www.owasp.org/index.php/Forced_browsing

 API6:2019 Mass Assignment

API Specific Exploitability: 2 Prevalence: 2 Detectability: 2 Technical: 2 Business Specific
Exploitation usually requires an
understanding of the business
logic, objects' relations, and the
API structure. Exploitation of
mass assignment is easier in
APIs, since by design they
expose the underlying
implementation of the application
along with the properties’ names.

Modern frameworks encourage developers
to use functions that automatically bind
input from the client into code variables and
internal objects. Attackers can use this
methodology to update or overwrite
sensitive object’s properties that the
developers never intended to expose.

Exploitation may lead to
privilege escalation, data
tampering, bypass of security
mechanisms, and more.

Is the API Vulnerable?
Objects in modern applications might contain many properties. Some of these properties should be updated
directly by the client (e.g., user.first_name or user.address) and some of them should not (e.g.,
user.is_vip flag).

An API endpoint is vulnerable if it automatically converts client parameters into internal object properties,
without considering the sensitivity and the exposure level of these properties. This could allow an attacker to
update object properties that they should not have access to.

Examples for sensitive properties:

• Permission-related properties: user.is_admin, user.is_vip should only be set by admins.

• Process-dependent properties: user.cash should only be set internally after payment verification.

• Internal properties: article.created_time should only be set internally by the application.

Example Attack Scenarios

Scenario #1
A ride sharing application provides a user the option to edit basic information for their profile. During this
process, an API call is sent to PUT /api/v1/users/me with the following legitimate JSON object:

{"user_name":"inons","age":24}

The request GET /api/v1/users/me includes an additional credit_balance property:

{"user_name":"inons","age":24,"credit_balance":10}

The attacker replays the first request with the following payload:

{"user_name":"attacker","age":60,"credit_balance":99999}

Since the endpoint is vulnerable to mass assignment, the attacker receives credits without paying.

Impacts
Threat
Agents

Attack
Vectors

 Security
 Weakness

 API6:2019 Mass Assignment

Scenario #2
A video sharing portal allows users to upload content and download content in different formats. An attacker
who explores the API found that the endpoint GET /api/v1/videos/{video_id}/meta_data returns
a JSON object with the video’s properties. One of the properties is "mp4_conversion_params":"-v
codec h264", which indicates that the application uses a shell command to convert the video.

The attacker also found the endpoint POST /api/v1/videos/new is vulnerable to mass assignment and
allows the client to set any property of the video object. The attacker sets a malicious value as follows:
"mp4_conversion_params":"-v codec h264 && format C:/". This value will cause a shell
command injection once the attacker downloads the video as MP4.

How To Prevent
• If possible, avoid using functions that automatically bind a client’s input into code variables or internal

objects.

• Whitelist only the properties that should be updated by the client.

• Use built-in features to blacklist properties that should not be accessed by clients.

• If applicable, explicitly define and enforce schemas for the input data payloads.

References

External
• CWE-915: Improperly Controlled Modification of Dynamically-Determined Object Attributes

https://cwe.mitre.org/data/definitions/915.html

 API7:2019 Security Misconfiguration

API Specific Exploitability: 3 Prevalence: 3 Detectability: 3 Technical: 2 Business Specific
Attackers will often attempt to
find unpatched flaws, common
endpoints, or unprotected files
and directories to gain
unauthorized access or
knowledge of the system.

Security misconfiguration can happen at
any level of the API stack, from the network
level to the application level. Automated
tools are available to detect and exploit
misconfigurations such as unnecessary
services or legacy options.

Security misconfigurations can
not only expose sensitive user
data, but also system details
that may lead to full server
compromise.

Is the API Vulnerable?
The API might be vulnerable if:

• Appropriate security hardening is missing across any part of the application stack, or if it has improperly
configured permissions on cloud services.

• The latest security patches are missing, or the systems are out of date.
• Unnecessary features are enabled (e.g., HTTP verbs).
• Transport Layer Security (TLS) is missing.
• Security directives are not sent to clients (e.g., Security Headers).
• A Cross-Origin Resource Sharing (CORS) policy is missing or improperly set.
• Error messages include stack traces, or other sensitive information is exposed.

Example Attack Scenarios

Scenario #1
An attacker finds the .bash_history file under the root directory of the server, which contains commands
used by the DevOps team to access the API:

$ curl -X GET 'https://api.server/endpoint/' -H 'authorization: Basic Zm9vOmJhcg=='

An attacker could also find new endpoints on the API that are used only by the DevOps team and are not
documented.

Scenario #2
To target a specific service, an attacker uses a popular search engine to search for computers directly accessible
from the Internet. The attacker found a host running a popular database management system, listening on the
default port. The host was using the default configuration, which has authentication disabled by default, and the
attacker gained access to millions of records with PII, personal preferences, and authentication data.

Scenario #3
Inspecting traffic of a mobile application an attacker finds out that not all HTTP traffic is performed on a secure
protocol (e.g., TLS). The attacker finds this to be true, specifically for the download of profile images. As user
interaction is binary, despite the fact that API traffic is performed on a secure protocol, the attacker finds a
pattern on API responses size, which he uses to track user preferences over the rendered content (e.g., profile
images).

Impacts
Threat
Agents

Attack
Vectors

 Security
 Weakness Impacts

Threat
Agents

Attack
Vectors

 Security
 Weakness Impacts

Threat
Agents

Attack
Vectors

 Security
 Weakness Impacts

Threat
Agents

Attack
Vectors

 Security
 Weakness Impacts

Threat
Agents

Attack
Vectors

 Security
 Weakness Impacts

Threat
Agents

Attack
Vectors

 Security
 Weakness

https://www.owasp.org/index.php/OWASP_Secure_Headers_Project

 API7:2019 Security Misconfiguration

How To Prevent
The API life cycle should include:

• A repeatable hardening process leading to fast and easy deployment of a properly locked down
environment.

• A task to review and update configurations across the entire API stack. The review should include:
orchestration files, API components, and cloud services (e.g., S3 bucket permissions).

• A secure communication channel for all API interactions access to static assets (e.g., images).
• An automated process to continuously assess the effectiveness of the configuration and settings in all

environments.

Furthermore:

• To prevent exception traces and other valuable information from being sent back to attackers, if
applicable, define and enforce all API response payload schemas including error responses.

• Ensure API can only be accessed by the specified HTTP verbs. All other HTTP verbs should be disabled
(e.g. HEAD).

• APIs expecting to be accessed from browser-based clients (e.g., WebApp front-end) should implement a
proper Cross-Origin Resource Sharing (CORS) policy.

References

OWASP
• OWASP Secure Headers Project

• OWASP Testing Guide: Configuration Management

• OWASP Testing Guide: Testing for Error Codes

• OWASP Testing Guide: Test Cross Origin Resource Sharing

External
• CWE-2: Environmental Security Flaws

• CWE-16: Configuration

• CWE-388: Error Handling

• Guide to General Server Security , NIST

• Let’s Encrypt: a free, automated, and open Certificate Authority

https://letsencrypt.org/
https://csrc.nist.gov/publications/detail/sp/800-123/final
https://cwe.mitre.org/data/definitions/388.html
https://cwe.mitre.org/data/definitions/16.html
https://cwe.mitre.org/data/definitions/2.html
https://www.owasp.org/index.php/Test_Cross_Origin_Resource_Sharing_(OTG-CLIENT-007)
https://www.owasp.org/index.php/Testing_for_Error_Code_(OTG-ERR-001)
https://www.owasp.org/index.php/Testing_for_configuration_management
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project

 API8:2019 Injection

API Specific Exploitability: 3 Prevalence: 2 Detectability: 3 Technical: 3 Business Specific
Attackers will feed the API with
malicious data through whatever
injection vectors are available
(e.g., direct input, parameters,
integrated services, etc.),
expecting it to be sent to an
interpreter.

Injection flaws are very common and are
often found in SQL, LDAP, or NoSQL
queries, OS commands, XML parsers, and
ORM. These flaws are easy to discover
when reviewing the source code. Attackers
can use scanners and fuzzers.

Injection can lead to
information disclosure and data
loss. It may also lead to DoS,
or complete host takeover.

Is the API Vulnerable?
The API is vulnerable to injection flaws if:

• Client-supplied data is not validated, filtered, or sanitized by the API.
• Client-supplied data is directly used or concatenated to SQL/NoSQL/LDAP queries, OS commands,

XML parsers, and Object Relational Mapping (ORM)/Object Document Mapper (ODM).
• Data coming from external systems (e.g., integrated systems) is not validated, filtered, or sanitized by

the API.

Example Attack Scenarios

Scenario #1
Firmware of a parental control device provides the endpoint /api/CONFIG/restore which expects an
appId to be sent as a multipart parameter. Using a decompiler, an attacker finds out that the appId is passed
directly into a system call without any sanitization:

snprintf(cmd, 128, "%srestore_backup.sh /tmp/postfile.bin %s %d",
 "/mnt/shares/usr/bin/scripts/", appid, 66);
system(cmd);

The following command allows the attacker to shut down any device with the same vulnerable firmware:

$ curl -k "https://${deviceIP}:4567/api/CONFIG/restore" -F
'appid=$(/etc/pod/power_down.sh)'

Scenario #2
We have an application with basic CRUD functionality for operations with bookings. An attacker managed to
identify that NoSQL injection might be possible through bookingId query string parameter in the delete
booking request. This is how the request looks like: DELETE /api/bookings?bookingId=678.

The API server uses the following function to handle delete requests:

router.delete('/bookings', async function (req, res, next) {
 try {
 const deletedBooking = await Bookings.findOneAndRemove({_id' : req.query.bookingId});
 res.status(200);
 } catch (err) {
 res.status(400).json({
 error: 'Unexpected error occured while processing a request'
 });
 }
});

Impacts
Threat
Agents

Attack
Vectors

 Security
 Weakness

 API8:2019 Injection
The attacker intercepted the request and changed bookingId query string parameter as shown below. In this
case, the attacker managed to delete another user's booking:

DELETE /api/bookings?bookingId[$ne]=678

How To Prevent
Preventing injection requires keeping data separate from commands and queries.

• Perform data validation using a single, trustworthy, and actively maintained library.
• Validate, filter, and sanitize all client-provided data, or other data coming from integrated systems.
• Special characters should be escaped using the specific syntax for the target interpreter.
• Prefer a safe API that provides a parameterized interface.
• Always limit the number of returned records to prevent mass disclosure in case of injection.
• Validate incoming data using sufficient filters to only allow valid values for each input parameter.
• Define data types and strict patterns for all string parameters.

References

OWASP
• OWASP Injection Flaws

• SQL Injection

• NoSQL Injection Fun with Objects and Arrays

• Command Injection

External
• CWE-77: Command Injection

• CWE-89: SQL Injection

https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/77.html
https://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/images/e/ed/GOD16-NOSQL.pdf
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/Injection_Flaws

 API9:2019 Improper Assets Management

API Specific Exploitability: 3 Prevalence: 3 Detectability: 2 Technical: 2 Business Specific
Old API versions are usually
unpatched and are an easy way to
compromise systems without
having to fight state-of-the-art
security mechanisms, which
might be in place to protect the
most recent API versions.

Outdated documentation makes it more
difficult to find and/or fix vulnerabilities.
Lack of assets inventory and retire
strategies leads to running unpatched
systems, resulting in leakage of sensitive
data. It’s common to find unnecessarily
exposed API hosts because of modern
concepts like microservices, which make
applications easy to deploy and independent
(e.g., cloud computing, k8s).

Attackers may gain access to
sensitive data, or even takeover
the server through old,
unpatched API versions
connected to the same
database.

Is the API Vulnerable?
The API might be vulnerable if:

• The purpose of an API host is unclear, and there are no explicit answers to the following questions:
• Which environment is the API running in (e.g., production, staging, test, development)?
• Who should have network access to the API (e.g., public, internal, partners)?
• Which API version is running?
• What data is gathered and processed by the API (e.g., PII)?
• What's the data flow?

• There is no documentation, or the existing documentation is not updated.
• There is no retirement plan for each API version.
• Hosts inventory is missing or outdated.
• Integrated services inventory, either first- or third-party, is missing or outdated.
• Old or previous API versions are running unpatched.

Example Attack Scenarios

Scenario #1
After redesigning their applications, a local search service left an old API version
(api.someservice.com/v1) running, unprotected, and with access to the user database. While targeting
one of the latest released applications, an attacker found the API address (api.someservice.com/v2).
Replacing v2 with v1 in the URL gave the attacker access to the old, unprotected API, exposing the personal
identifiable information (PII) of over 100 Million users.

Scenario #2
A social network implemented a rate-limiting mechanism that blocks attackers from using brute-force to guess
reset password tokens. This mechanism wasn’t implemented as part of the API code itself, but in a separate
component between the client and the official API (www.socialnetwork.com). A researcher found a beta
API host (www.mbasic.beta.socialnetwork.com) that runs the same API, including the reset
password mechanism, but the rate limiting mechanism was not in place. The researcher was able to reset the
password of any user by using a simple brute-force to guess the 6 digits token.

Impacts
Threat
Agents

Attack
Vectors

 Security
 Weakness

 API9:2019 Improper Assets Management

How To Prevent
• Inventory all API hosts and document important aspects of each one of them, focusing on the API

environment (e.g., production, staging, test, development), who should have network access to the host
(e.g., public, internal, partners) and the API version.

• Inventory integrated services and document important aspects such as their role in the system, what data
is exchanged (data flow), and its sensitivity.

• Document all aspects of your API such as authentication, errors, redirects, rate limiting, cross-origin
resource sharing (CORS) policy and endpoints, including their parameters, requests, and responses.

• Generate documentation automatically by adopting open standards. Include the documentation build in
your CI/CD pipeline.

• Make API documentation available to those authorized to use the API.
• Use external protection measures such as API security firewalls for all exposed versions of your APIs,

not just for the current production version.
• Avoid using production data with non-production API deployments. If this is unavoidable, these

endpoints should get the same security treatment as the production ones.
• When newer versions of APIs include security improvements, perform risk analysis to make the

decision of the mitigation actions required for the older version: for example, whether it is possible to
backport the improvements without breaking API compatibility or you need to take the older version out
quickly and force all clients to move to the latest version.

References

External
• CWE-1059: Incomplete Documentation

• OpenAPI Initiative

https://www.openapis.org/
https://cwe.mitre.org/data/definitions/1059.html

API10:2019 Insufficient Logging & Monitoring

API Specific Exploitability: 2 Prevalence: 3 Detectability: 1 Technical: 2 Business Specific
Attackers take advantage of lack
of logging and monitoring to
abuse systems without being
noticed.

Without logging and monitoring, or with
insufficient logging and monitoring, it is
almost impossible to track suspicious
activities and respond to them in a timely
fashion.

Without visibility over on-
going malicious activities,
attackers have plenty of time to
fully compromise systems.

Is the API Vulnerable?
The API is vulnerable if:

• It does not produce any logs, the logging level is not set correctly, or log messages do not include
enough detail.

• Log integrity is not guaranteed (e.g., Log Injection).

• Logs are not continuously monitored.

• API infrastructure is not continuously monitored.

Example Attack Scenarios

Scenario #1
Access keys of an administrative API were leaked on a public repository. The repository owner was notified by
email about the potential leak, but took more than 48 hours to act upon the incident, and access keys exposure
may have allowed access to sensitive data. Due to insufficient logging, the company is not able to assess what
data was accessed by malicious actors.

Scenario #2
A video-sharing platform was hit by a “large-scale” credential stuffing attack. Despite failed logins being
logged, no alerts were triggered during the timespan of the attack. As a reaction to user complaints, API logs
were analyzed and the attack was detected. The company had to make a public announcement asking users to
reset their passwords, and report the incident to regulatory authorities.

Impacts
Threat
Agents

Attack
Vectors

 Security
 Weakness Impacts

Threat
Agents

Attack
Vectors

 Security
 Weakness Impacts

Threat
Agents

Attack
Vectors

 Security
 Weakness Impacts

Threat
Agents

Attack
Vectors

 Security
 Weakness Impacts

Threat
Agents

Attack
Vectors

 Security
 Weakness Impacts

Threat
Agents

Attack
Vectors

 Security
 Weakness

https://www.owasp.org/index.php/Log_Injection

API10:2019 Insufficient Logging & Monitoring

How To Prevent
• Log all failed authentication attempts, denied access, and input validation errors.

• Logs should be written using a format suited to be consumed by a log management solution, and should
include enough detail to identify the malicious actor.

• Logs should be handled as sensitive data, and their integrity should be guaranteed at rest and transit.

• Configure a monitoring system to continuously monitor the infrastructure, network, and the API
functioning.

• Use a Security Information and Event Management (SIEM) system to aggregate and manage logs from
all components of the API stack and hosts.

• Configure custom dashboards and alerts, enabling suspicious activities to be detected and responded to
earlier.

References

OWASP
• OWASP Logging Cheat Sheet

• OWASP Proactive Controls: Implement Logging and Intrusion Detection

• OWASP Application Security Verification Standard: V7: Error Handling and Logging Verification
Requirements

External
• CWE-223: Omission of Security-relevant Information

• CWE-778: Insufficient Logging

https://cwe.mitre.org/data/definitions/778.html
https://cwe.mitre.org/data/definitions/223.html
https://github.com/OWASP/ASVS/blob/master/4.0/en/0x15-V7-Error-Logging.md
https://github.com/OWASP/ASVS/blob/master/4.0/en/0x15-V7-Error-Logging.md
https://www.owasp.org/index.php/OWASP_Proactive_Controls
https://www.owasp.org/index.php/Logging_Cheat_Sheet

 +D What’s Next for Developers

The task to create and maintain secure software, or fixing existing sofware, can be difficult. APIs are no
different.

We believe that education and awareness are key factors to write secure software. Everything else required to
accomplish the goal, depends on establishing and using repeatable security processes and standard
security controls.

OWASP has numerous free and open resources to address security since the very beginning of the project.
Please visit the OWASP Projects page for a comprehensive list of available projects.

Education

You can start reading OWASP Education Project materials according to your
profession and interest. For hands-on learning, we added crAPI - Completely
Ridiculous API on our roadmap. Meanwhile, you can practice WebAppSec using
the OWASP DevSlop Pixi Module, a vulnerable WebApp and API service intent
to teach users how to test modern web applications and API's for security issues,
and how to write more secure API's in the future. You can also attend OWASP
AppSec Conference training sessions, or join your local chapter.

Security Requirements

Security should be part of every project from the beginning. When doing
requirements elicitation, it is important to define what "secure" means for that
project. OWASP recommends you use the OWASP Application Security
Verification Standard (ASVS) as a guide for setting the security requirements. If
you're outsourcing, consider the OWASP Secure Software Contract Annex, which
should be adapted according to local law and regulations.

Security Architecture

Security should remain a concern during all the project stages. The OWASP
Prevention Cheat Sheets are a good starting point for guidance on how to design
security in during the architecture phase. Among many others, you'll find the
REST Security Cheat Sheet and the REST Assessment Cheat Sheet.

Standard Security
Controls

Adopting Standard Security Controls reduces the risk of introducing security
weaknesses while writing your own logic. Despite the fact that many modern
frameworks now come with built-in standard effective controls, OWASP
Proactive Controls gives you a good overview of what security controls you
should look to include in your project. OWASP also provides some libraries and
tools you may find valuable, such as validation controls.

Secure Software
Development Life Cycle

You can use the OWASP Software Assurance Maturity Model (SAMM) to
improve the process when building APIs. Several other OWASP projects are
available to help you during the different API development phases e.g., the
OWASP Code Review Project.

https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
https://www.owasp.org/index.php/OWASP_SAMM_Project
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=OWASP_Proactive_Controls_2018
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=OWASP_Proactive_Controls_2018
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/REST_Assessment_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/REST_Security_Cheat_Sheet.md
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.owasp.org/index.php/OWASP_Secure_Software_Contract_Annex
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/OWASP_Chapter
https://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
https://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
https://devslop.co/Home/Pixi
https://www.owasp.org/index.php/OWASP_API_Security_Project#tab=Road_Map
https://www.owasp.org/index.php/OWASP_Education_Material_Categorized
https://www.owasp.org/index.php/Category:OWASP_Project

 +DSO What’s Next for DevSecOps

Due to their importance in modern application architectures, building secure APIs is crucial. Security cannot be
neglected, and it should be part of the whole development life cycle. Scanning and penetration testing yearly
are no longer enough.

DevSecOps should join the development effort, facilitating continuous security testing across the entire
software development life cycle. Their goal is to enhance the development pipeline with security automation,
and without impacting the speed of development.

In case of doubt, stay informed, and review, the DevSecOps Manifesto often.

Understand the Threat
Model

Testing priorities come from a threat model. If you don't have one, consider
using OWASP Application Security Verification Standard (ASVS), and the
OWASP Testing Guide as an input. Involving the development team may help to
make them more security-aware.

Understand the SDLC

Join the development team to better understand the Software Development Life
Cycle. Your contribution on continuous security testing should be compatible
with people, processes, and tools. Everyone should agree with the process, so
that there's no unnecessary friction or resistance.

Testing Strategies

As your work should not impact the development speed, you should wisely
choose the best (simple, fastest, most accurate) technique to verify the security
requirements. The OWASP Security Knowledge Framework and OWASP
Application Security Verification Standard can be great sources of functional and
nonfunctional security requirements. There are other great sources for projects
and tools similar to the one offered by the DevSecOps community.

Achieving Coverage and
Accuracy

You're the bridge between developers and operations teams. To achieve
coverage, not only should you focus on the functionality, but also the
orchestration. Work close to both development and operations teams from the
beginning so you can optimize your time and effort. You should aim for a state
where the essential security is verified continuously.

Clearly Communicate
Findings

Contribute value with less or no friction. Deliver findings in a timely fashion,
within the tools development teams are using (not PDF files). Join the
development team to address the findings. Take the opportunity to educate them,
clearly describing the weakness and how it can be abused, including an attack
scenario to make it real.

http://devsecops.org/
https://github.com/devsecops/awesome-devsecops
http://devsecops.github.io/
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/OWASP_Security_Knowledge_Framework
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.devsecops.org/

 +DAT Methodology and Data

Overview
Since the AppSec industry has not been specifically focused on the most recent architecture of applications, in
which APIs play an important role, compiling a list of the ten most critical API security risks, based on a public
call for data, would have been a hard task. Despite there being no public data call, the resulting Top 10 list is
still based on publicly available data, security experts' contributions, and open discussion with the security
community.

Methodology and Data
In the first phase, publicly available data about APIs security incidents were collected, reviewed, and
categorized by a group of security experts. Such data was collected from bug bounty platforms and
vulnerability databases, within a one-year-old time frame. It was used for statistical purposes.

In the next phase, security practitioners with penetration testing experience were asked to compile their own
Top 10 list.

The OWASP Risk Rating Methodology was used to perform he Risk Analysis. The scores were discussed and
reviewed between the security practitioners. For considerations on these matters, please refer to the API
Security Risks section.

The first draft of the OWASP API Security Top 10 2019 resulted from a consensus between statistical results
from phase one, and the security practitioners' lists. This draft was then submitted for appreciation and review
by another group of security practitioners, with relevant experience in the API security fields.

The OWASP API Security Top 10 2019 was first presented in the OWASP Global AppSec Tel Aviv event (May
2019). Since then, it has been available on GitHub for public discussion and contributions.

The list of contributors is available in the Acknowledgments section.

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

 +ACK Acknowledgments

Acknowledgments to Contributors
We’d like to thank the following contributors who contributed publicly on GitHub or via other means:

• 007divyachawla
• Abid Khan
• Adam Fisher
• anotherik
• bkimminich
• caseysoftware
• Chris Westphal
• dsopas
• DSotnikov
• emilva
• ErezYalon
• flascelles
• Guillaume Benats
• IgorSasovets
• Inonshk
• JonnySchnittger
• jmanico
• jmdx
• Keith Casey
• kozmic
• LauraRosePorter
• Matthieu Estrade
• nathanawmk
• PauloASilva
• pentagramz
• philippederyck
• pleothaud
• r00ter
• Raj kumar
• Sagar Popat
• Stephen Gates
• thomaskonrad
• xycloops123

	FW Foreword
	TOC Table of Contents
	FW Foreword
	I Introduction
	RN Release Notes
	RISK API Security Risk
	T10 OWASP API Security Top 10 - 2019
	API1:2019 Broken Object Level Authorization
	API2:2019 Broken User Authentication
	API3:2019 Excessive Data Exposure
	API4:2019 Lack of Resources & Rate Limiting
	API5:2019 Broken Function Level Authorization
	API6:2019 Mass Assignment
	API7:2019 Security Misconfiguration
	API8:2019 Injection
	API9:2019 Improper Assets Management
	API10:2019 Insufficient Logging & Monitoring
	+D What’s Next for Developers
	+DSO What’s Next for DevSecOps
	+DAT Methodology and Data
	+ACK Acknowledgments
	About OWASP
	Welcome to the OWASP API Security Top 10 - 2019!
	References
	OWASP
	External

	Is The API Vulnerable?
	Example Attack Scenarios
	Scenario #1
	Scenario #2

	How To Prevent
	References
	External

	Is the API Vulnerable?
	Example Attack Scenarios
	Scenario #1
	Scenario #2
	How To Prevent
	References
	OWASP
	External

	Is the API Vulnerable?
	Example Attack Scenarios
	Scenario #1
	Scenario #2

	How To Prevent
	References
	External

	Is the API Vulnerable?
	Example Attack Scenarios
	Scenario #1
	Scenario #2

	How To Prevent
	References
	OWASP
	External

	Is the API Vulnerable?
	Example Attack Scenarios
	Scenario #1
	Scenario #2

	How To Prevent
	References
	OWASP
	External

	Is the API Vulnerable?
	Example Attack Scenarios
	Scenario #1
	Scenario #2

	How To Prevent
	References
	External

	Is the API Vulnerable?
	Example Attack Scenarios
	Scenario #1
	Scenario #2
	Scenario #3

	How To Prevent
	References
	OWASP
	External

	Is the API Vulnerable?
	Example Attack Scenarios
	Scenario #1
	Scenario #2

	How To Prevent
	References
	OWASP
	External

	Is the API Vulnerable?
	Example Attack Scenarios
	Scenario #1
	Scenario #2

	How To Prevent
	References
	External

	Is the API Vulnerable?
	Example Attack Scenarios
	Scenario #1
	Scenario #2

	How To Prevent
	References
	OWASP
	External

	Overview
	Methodology and Data
	Acknowledgments to Contributors

