

SUBMISSION TO THE OFFICE OF THE
NATIONAL CYBER DIRECTOR

For the RFI on Open-Source Software Security

OWASP Foundation, Inc.

8th November 2023

2

Andrew van der Stock

Executive Director, OWASP Foundation

Colorado Springs

8th November 2023

The OWASP Foundation, Inc. (OWASP) has been at the forefront of application security since its

inception in 2001. The OS3I’s RFI on Open-Source Software Security: Areas of Long-Term Focus and

Prioritization is timely and urgent. OWASP is the peak not-for-profit in application security and

represents a large global community of application security professionals and developers.

OWASP has dedicated itself to fostering an open environment where the United States can remain

ahead of strategic competitors or current and potential adversaries. By concentrating on fields that are

research and development-intensive industries, OWASP aligns with the national interest in maintaining

technology leadership and peer status among allies and partners. Our commitment is evident through

the development of open-source tools and educational resources that contribute to a more secure

digital infrastructure.

The OWASP Foundation is volunteer-driven, including the OWASP Board, chapter leaders, project

leaders, and members. We support innovative security research with grants and infrastructure,

providing activity and investment in the builder, breaker, and defender roles.

All OWASP tools, standards, documents, videos, presentations, and chapters are free and open to

anyone interested in improving application security. We advocate approaching application security as a

people, process, and technology problem because the most effective approaches to application security

require improvements in these areas.

OWASP is not affiliated with any technology company, although we support the informed use of

commercial security technology. OWASP produces materials in a collaborative, transparent, and open

way. Our freedom from commercial pressures allows us to provide unbiased, practical, cost-effective

information about application security.

OWASP is incredibly well-placed to assist the US Government, its agencies, and contractors through

various open-source tools, standards, documents, and training. We detail areas for investment that may

help achieve the goals and focus areas defined in the RFI.

We eagerly anticipate the outcome of this collaboration and stand ready to provide any further

assistance, leveraging our collective expertise and resources to bolster the nation's competitive edge

and security posture.

Sincerely,

Andrew van der Stock, Executive Director

3

Introduction

We at the OWASP Foundation (OWASP) recognize the profound significance of the RFI on Open-Source

Software Security initiated by the Office of the National Cyber Director. As proponents of a more secure

digital ecosystem for over 20 years, we believe collaborative efforts, especially involving communities

like OWASP, are essential for creating robust solutions for software security challenges.

Memory Safety Defined
A 'memory-safe language' ensures a program does not touch memory areas it should not. Imagine you

have a set of rules that stop a program from reaching places where it could either grab things that are

not there (which slows it down) or peek at something it is not supposed to (which is a security risk).

Memory Safety Vulnerabilities
When a hacker wants to exploit a memory-unsafe language, they will be looking to exploit what is

known as a write-what-where primitive, which can allow a malicious actor to put an arbitrary program

into an executable location. It is a powerful exploit and often easy to overlook. Memory-safe languages

make it impossible for those exploits to get past the compiler.

For optimal software protection, OWASP recommends utilizing programming languages designed with

strong security measures. This approach significantly reduces the likelihood of unauthorized code

manipulation. However, constant awareness is essential, as exemplified by the Log4j incident, which

exposed vulnerabilities within a language typically deemed secure.

OWASP’s view of priorities

Which potential areas and sub-areas of focus should be prioritized?
OWASP believes the following areas should prioritized:

• Financial Support for Open-source: Secure funding is essential to sustain open-source software
education and development.

• Developer Education and Accreditation: Strengthen software security by providing
comprehensive training and certification for developers.

• Software Supply Chain Integrity: Implement systems to help users identify and avoid insecure
software components.

• Broad Vulnerability Reduction: Adopt standards like OWASP's ASVS and SAMM to eliminate
widespread software vulnerabilities.

• Legacy System Security: Focus on improving memory safety in applications written in older
languages like C, C++, COBOL, or Fortran.

What areas of focus are the most time-sensitive?
OWASP views the acquisition of funds and the provision of developer training as priorities. Without

financial support, developing and implementing educational initiatives is impossible. Given the

continuous nature of code development, it is essential to produce educational materials that meet

4

academic standards promptly. This ensures that new code is crafted with higher security and that

existing code undergoes thorough vulnerability assessments.

What technical, policy, or economic challenges must the Government consider?
For every Red Hat or Mozilla, with hundreds of paid open-source contributors, most open-source

software is produced by a single unpaid volunteer at night for surprisingly large and heavily used

projects. Their ability to produce secure code is only as good as their education, desire to move to

secure frameworks and languages, and ability to fund their education and certifications. They often will

have no formal secure development lifecycle (SDLC) nor tooling to help find common vulnerabilities at

compile time.

Action: The Government should provide community organizations such as OWASP the means to

help individual contributors, such as funding the creation of open-source static code analysis

tools (SAST) or allowing developers access usually expensive resources through free programs

with a free or low barrier to entry.

Open-source communities like OWASP exist all over the world. So do open-source developers. A US-

centric or US-only approach will be doomed to failure.

Action: The US Government should lead in promulgating secure software for all, regardless of

country, because, in the end, the US Government, its agencies, and contractors will benefit from

the result.

Trying to force mandatory requirements under US laws or regulations may fail simply because the

compliance burden is too high.

Action: OWASP advocates that any necessary regulations or laws are aimed at those who can

afford to comply, such as contractors, large ISVs, agencies, etc.

Secure Open-Source Foundations

Fostering the adoption of memory-safe languages
OWASP strongly supports moving from C and C++ to memory-safer languages such as Rust, Go, Java, C#,

Swift, etc. The days of needing the absolute speed of near-assembly language are far outweighed today

by the speed of code generated by modern memory-safe compilers.

Moving To Memory Safety
The solution is simple: a transition towards memory-safe languages can be gradual. However, all existing

unsafe architectures that would be hard to refactor immediately must be “wrapped” in a memory-safe

language, utilizing a foreign function interface.

To mitigate ongoing memory safety in existing codebases, we recommend referencing the memory-safe

matrix, guiding the intentional movement from memory-unsafe languages to safe languages based on

their ease of syntactic transition (meaning their code patterns are often similar enough to keep similar

architecture through transition).

https://github.com/Salkimmich/memorysafety/blob/main/MemorySafeMatrix.md

5

The aim is to provide a reference for developer organizations to choose a clear path forward to

transition critical infrastructure and provide the optimal use case for each popular memory-safe

language. We expect this reference to evolve as memory safety patterns and languages evolve.

Mitigating Composite Vulnerabilities in Memory Safe Languages
Modern software comprises custom code, third-party libraries or frameworks, and open-source

components. An accurate inventory of all components enables organizations to identify risk, allows for

greater transparency, and enables rapid impact analysis. CycloneDX was created for this purpose.

Importantly, CycloneDX uniquely verifies several layers into a codebase’s dependency tree, making it

easier to detect memory unsafe patterns when the composite vulnerability is known. Simply put,

identifying if Log4j and JNDI are inside your codebase, even if one is several layers “deep,” is now easier

to scan and mitigate.

Additional Considerations
Shifting to memory-safe programming languages reduces exposure to a subset of common security

vulnerabilities that hackers favor due to their simplicity and widespread occurrence.

However, it is crucial to recognize that this does not equate to complete immunity from attacks. While

these languages present more complexity for would-be attackers, they are not impervious to hacking

attempts. Memory-safe languages are designed with security as a priority, which helps guard against a

range of known exploits.

For instance, the Rust programming language exemplifies the balance between security and efficiency. It

is less susceptible to specific exploits because it enforces strict data handling requirements, like needing

strings in UTF-8 format. This aids in the computer's swift and secure data processing. This illustrates the

synergy between maintaining robust security measures and achieving operational efficiency.

Reducing Entire Classes of Vulnerabilities at Scale

Secure Development Practices – OWASP SAMM
OWASP SAMM, a software development maturity model and a benchmarking methodology, comprises

fifteen secure development lifecycle activities that organizations should aspire to. SAMM is simple

enough that an individual developer working independently can do most SAMM activities but complex

enough to make a real difference in producing secure software at any organization. Many governments

and organizations have adopted SAMM. As a free and open standard, SAMM has a low cost of

compliance, which is a crucial issue for many organizations facing hefty requirements, such as PCI DSS

compliance audits.

Action: OWASP recommends the US Government review and adopt OWASP SAMM, particularly

if their agencies or contractors have no defined secure development lifecycle or practices. It can

be adopted progressively as funds or resources allow.

What does memory safety not address?
Memory safety is not a panacea. Memory safety helps with a bug class not highly present in web

application languages, frameworks, and APIs - buffer overflows. OWASP notes that memory-safe

languages do not address the following bug classes, including insecure, insufficient, or missing:

https://owasp.org/www-project-cyclonedx/
https://owaspsamm.org/

6

• Architecture

• Authentication and Session Management

• Authorization

• Input validation and output encoding

• Cryptographic Flaws

• Error Handling

• Data Protection and Privacy

• Secure communications

• Malicious code checks

• Business Logic Flaws

• File and Resource Handling

• API Security

• Configuration

These are the principal areas of OWASP’s Application Security Verification Standard not addressed by

memory safety, covering some 280 controls.

Simply re-coding an insecure application into a memory-safe language, such as Rust, does not address

these issues. This is why OWASP will be recommending the OWASP Application Security Verification

Standard Level 1 as the base minimum for all applications to be considered even somewhat secure. This

applies to systems, line of business, web or mobile applications, and APIs equally.

Web application languages and frameworks are memory-safe(r)
Most web programming languages and tools like C#, Node.js, TypeScript, and Java are built to be safe

from memory errors. Usually, you do not have to change your code to make it safe.

OWASP recommends that US Government agencies and critical infrastructure providers regularly

perform secure code reviews and static code analysis, as well as consider other testing methodologies or

tools, such as IAST, to ensure that the application has fewer avoidable vulnerabilities. Developers should

be trained in secure coding methodologies. Agencies and contractors should have a software security

maturity program to benchmark their secure software delivery lifecycle (SDLC).

Strengthening the Software Supply Chain
OWASP strongly believes that securing the supply chain is everyone’s responsibility – from compilers

and build tools emitting software bill of materials (SBOM’s), to end consumers having free and open

access to details of what software they are running so they can make informed decisions.

OWASP has several significant tools in the software supply chain area, all open source and free to

download, use, and contribute.

Action: OWASP encourages adopting and using OWASP’s already existing tools and standards by

the US Government, its agencies, and contractors.

OWASP CycloneDX – Software Bill of Materials Standard
OWASP CycloneDX is the premier method of describing a software bill of materials. This is an

interchange format that allows vendors and authors to create JSON and XML documents containing all

https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-application-security-verification-standard/

7

the known components and their versions in an easy to consume format. The vast majority of SBOM

tooling is CycloneDX enabled. If all software came with SBOM’s, it would make identifying software with

faulty or vulnerable components trivial. OWASP supports CISA’s SBOM-everywhere initiative.

OWASP Dependency Track – Dependency Monitoring
OWASP Dependency Track is an intelligent Component Analysis platform that allows organizations to

identify and reduce risk in the software supply chain. Dependency-Track takes a unique and highly

beneficial approach by leveraging the capabilities of Software Bill of Materials (SBOM). This approach

provides capabilities that traditional Software Composition Analysis (SCA) solutions cannot achieve.

OWASP Dependency Check – Dependency Discovery
OWASP Dependency Check is a Software Composition Analysis (SCA) tool that attempts to detect

publicly disclosed vulnerabilities contained within a project’s dependencies. It does this by determining

if there is a Common Platform Enumeration (CPE) identifier for a given dependency. If found, it will

generate a report linking to the associated CVE entries.

OWASP Software Component Verification Standard
The Software Component Verification Standard (SCVS) is a community-driven effort to establish a

framework for identifying activities, controls, and best practices, which can help identify and reduce risk

in a software supply chain. Managing risk in the software supply chain is important to reduce the surface

area of systems vulnerable to exploits and to measure technical debt as a barrier to remediation.

Developer Education
OWASP has a great deal of freely available training videos and presentations. However, developers need

a way to consume secure software development education in a guided manner. One of the member

benefits of OWASP was through third-party companies such as SecureFlag, AppSec Engineer, Secure

Code Warrior, and we45, all of whom provided free access to their tools.

As detailed in the next section, OWASP is currently undertaking an effort to create an open-source

tertiary secure software education syllabus and framework, as well as industry education, certification,

and more. OWASP strongly believes that developers need to know how to code

securely and would if only they had open, free access to that education.

Case Study - OWASP Juice Shop – Developer Training

OWASP Juice Shop is the latest in a long line of OWASP-developed deliberately

vulnerable web applications. Juice Shop is a modern application written in a

memory-safe language (Angular / TypeScript), with a node.js API backend. Juice

Shop helps teach application security professionals and developers how their

code can be exploited and how to fix the code. As Juice Shop is written in a

memory-safe language with extensive end-to-end testing, considering that it has over 180 known

vulnerabilities demonstrates that simply transitioning to a memory-safe language or framework is

insufficient to protect applications from exploitable application vulnerabilities.

https://www.cisa.gov/sbom
https://owasp.org/www-project-dependency-track/
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-software-component-verification-standard/

8

Sustaining Open-Source Communities and Governance
OWASP Foundation, Inc. as a 501 (c) 3 not-for-profit entity, supports a community of over 65,000

application security professionals and developers. We are actively looking for funding to help deliver the

following programs:

OWASP Education Committee Tertiary Academic Syllabus and Framework $750k

The OWASP Education Committee has been working on an open-source tertiary syllabus and framework

that would allow any university or tertiary institution to adopt OWASP’s academic syllabus for secure

development aimed at software engineers and computer scientists. The funds would fund workshops,

completion of the syllabus, the use of full-time academic researchers for a year, and a train-the-trainer

program.

OWASP Education Committee Industry Syllabus for Developer Education $350k

As most developers have not received a single day of secure coding education, OWASP intends to make

a standard curriculum for third-party training providers to adopt and give worldwide. The funds would

be used to develop materials of high quality within OWASP in concert with industry providers, both in

memory safe languages such Rust and Swift, but also in other commonly used languages.

OWASP Education Committee Developer Education Certification $1.25m

Once we have the materials for industry training, the next step is to create certification programs for

both delivery providers (to ensure that they are accredited and qualified to deliver the materials to a

high standard) and developers. OWASP will use the funds to develop the certification programs with an

external certification provider, such as Pearson Vue or similar, and ongoing certification maintenance

costs.

OWASP CycloneDX ECMA Standardization $700k

OWASP CycloneDX is already the premier software bill of materials standard in use worldwide (the other

is SPDX, which is supported by some but not all tools). The next step is to fund the four primary

developers to produce a standardized version of CycloneDX to promote interoperability and adoption

via ECMA standardization. We envisage this to take six months of initial work, followed by a

commentary period per ECMA standardization processes.

OWASP has other funding opportunities, but these would fall outside the scope of the RFI.

International Collaboration
OWASP, as the peak web application security not-for-profit, welcomes a collaboration between OWASP

and the US Government, and other similar organizations, such as the Linux Foundation’s OpenSSF,

SecureCode, and other not-for-profit cyber security organizations.

All too often, governments, agencies, organizations, and contractors are required to adhere to many

conflicting standards. OWASP has been aligning its core standards where it makes sense to do so:

9

• OWASP Application Security Verification Standard 4.0 deliberately aligned with NIST 800-63 and

some elements of NIST 800-53, to lighten the burden of compliance with the ASVS.

• OWASP was recently inducted into ECMA, the global standards organization, to help standardize

OWASP CycloneDX.

We have several ready-to-go initiatives (or are already underway and seeking additional funding). With

over one thousand leaders, 6,500 financial members, and over 65,000 regular participants, OWASP is

the best-placed organization to help the US Government improve the security of open-source projects

and tooling.

Many OWASP projects can serve as foundational tools and resources in achieving the objectives set out

by this RFI for low to no cost that are also seeking funding to accelerate their development:

• OWASP MAS: RFI Focus Area Addressed: Secure Open-Source Software Foundations; Developer

Education. Connection: Serves as a guideline for mobile application security, supporting

adoption of secure configurations and practices in mobile open-source software development

and providing training resources for developers. ($43,240)

• OWASP BLT: RFI Focus Area Addressed: Behavioral and Economic Incentives. Connection: Aids

developers in managing vulnerabilities, incentivizing secure development practices through

streamlined vulnerability management tools. ($426,000)

• OWASP Dependency-Track: RFI Focus Area Addressed: Strengthening the Software Supply

Chain. Connection: Ensures a risk-free software supply chain by tracking dependencies,

supporting secure and privacy-preserving attestations, and automated tracking of complex code

dependencies. ($416,000)

• OWASP SAMM: RFI Focus Area Addressed: Secure Open-Source Software Foundations.

Connection: Provides a framework integrating security within development, promoting secure

programming practices, and reducing vulnerabilities, essential for fostering the adoption of

memory-safe languages and secure configurations in open-source software. ($801,000)

• OWASP Juice Shop: RFI Focus Area Addressed: Developer Education. Connection: An educational

tool for developers with practical examples and training opportunities on prevalent software

vulnerabilities, supporting security and open-source software education and training. ($17,200)

• OWASP Core Rule Set: RFI Focus Area Addressed: Secure Open-Source Software Foundations.

Connection: A comprehensive set of generic attack detection rules for web application firewalls

strengthening defense against emerging attacks on web applications, used by many providers of

critical infrastructures and secure web applications. ($332,000)

• OWASP Coraza: RFI Focus Area Addressed: Secure Open-Source Software Foundations.

Connection: An open-source engine for web application firewalls, strengthening defense against

emerging attacks on web applications. ($80,000)

• OWASP ASVS: RFI Focus Area Addressed: Secure Open-Source Software Foundations.

Connection: Establishes universal security controls for web application development, supporting

secure by default configurations and fostering best practices in open-source software

development. ($90,000)

• OWASP OpenCRE: RFI Focus Area Addressed: Significantly improve International Collaboration

on Security Standards. Connection: As a universal resource, it unifies security standards globally,

10

aiding in identifying and harmonizing international priorities and dependencies in open-source

software security. ($40,000)

• OWASP Dependency Check: RFI Focus Area Addressed: Strengthening the Software Supply

Chain. Connection: Dependency Check discovers vulnerable components in both the build and

delivered phases. Keeping Dependency Check up to date with the thousands of new

vulnerabilities each year is not easy for one volunteer. Funding would allow for a full-time

contractor to maintain Dependency Check and improve the accuracy of results. ($250,000)

Conclusion
The OWASP community has the potential for further innovations. We encourage an expansive

collaboration, inviting the US Government to contribute additional projects and tools to OWASP or

assisting OWASP in delivering our existing and new programs. By leveraging OWASP's worldwide

expertise, we can ensure a comprehensive approach to enhancing open-source software security.

Through the investment of approximately $5.5 million of US Government funds, OWASP will project

manage and disburse funds to a set of projects that have a proven track record, including the

development of free developer education around Rust and Swift, developer certification and strategic

improvements to mature projects to take them to the next level.

OWASP's commitment to fostering a secure web environment resonates deeply with the goals of the

RFI. As we progress, embracing and integrating insights from such esteemed communities will be

paramount in elevating open-source software security.

	Introduction
	Memory Safety Defined
	Memory Safety Vulnerabilities

	OWASP’s view of priorities
	Which potential areas and sub-areas of focus should be prioritized?
	What areas of focus are the most time-sensitive?
	What technical, policy, or economic challenges must the Government consider?

	Secure Open-Source Foundations
	Fostering the adoption of memory-safe languages
	Moving To Memory Safety
	Mitigating Composite Vulnerabilities in Memory Safe Languages
	Additional Considerations

	Reducing Entire Classes of Vulnerabilities at Scale
	Secure Development Practices – OWASP SAMM
	What does memory safety not address?
	Web application languages and frameworks are memory-safe(r)

	Strengthening the Software Supply Chain
	OWASP CycloneDX – Software Bill of Materials Standard
	OWASP Dependency Track – Dependency Monitoring
	OWASP Dependency Check – Dependency Discovery
	OWASP Software Component Verification Standard

	Developer Education
	Sustaining Open-Source Communities and Governance
	International Collaboration
	Conclusion

