
© 2023 Secure D Center Co., Ltd.

OWASP API Top 10
Krischat Thataristorai, Secure D Center

OWASP Meeting #1 (All Season place, 38 Floor)
31 March 2023

© 2023 Secure D Center Co., Ltd.

WHOAMI

Background
• Krischat, a cybersecurity specialist with over two years of experience in the penetration testing covering web application, Mobile
application and backend API, ATM/Kiosk, Wireless and network infrastructure.

Professional and Industry Experience:
• Published CVE security vulnerabilities (CVE-2021-36286, CVE-2021-36297) on DELL and (CVE-2022-23456, CVE-2022-38395)
on HP
• Conducted Black-box and Grey-box web application, mobile application (iOS, Android) and Backend API penetration testing in
various industries (e.g., Financial/Bank, Insurance, Government, Petrochemical)
• Conducted Black-box and Grey-box web application penetration testing on critical financial app for a major financial company
• Conducted Red teaming, External and Internal network infrastructure penetration testing for major financial firms (Top bank in
Thailand)
• Conducted Kiosk/ATM/CDM penetration testing including Physical, application binary, network communication and servers-side
API for a major bank.
• Conducted Smart POS system penetration testing and related backend API for a major e-commerce company.
• Contributed to the mobile application penetration testing internal framework.Education and Qualifications

•Bachelor of Engineering (Computer
Engineering), Kasetsart University
•Cyber Security Foundation - CSFPC
•Offensive Security Certified
Professional - OSCP
•Certified Red Team Professional
(CRTP)

© 2023 Secure D Center Co., Ltd.

API(s) Introduction

© 2023 Secure D Center Co., Ltd.

API(s)
What are API(s) ?

[1] https://en.wikipedia.org/wiki/API
[2] https://www.researchgate.net/publication/323817030_API_vulnerabilities_Current_status_and_dependencies
[3] https://www.google.com/books/edition/API_Design_for_C++/IY29LylT85wC?gbpv=1 (Chapter 1, Figure 1.1)

Reference: Reddy, Marathi (2011). API Design for C++ [3]

q API as known as Application Programming Interface[1]

q API is a program or system that is accessible by other programs[2]

and communicates with each other.
q Exposes a set of data and functions to facilitate interactions between

computer programs.
q API(s) are providing various types of services.

© 2023 Secure D Center Co., Ltd.

API(s)
Why is API security necessary?

q APIs are everywhere. If there is an application or service available on the internet, you can be sure it’s
supported, in some way, by an API. These days, APIs power mobile applications, the Internet of Things (IoT),
cloud-based customer services, internal applications, partner applications, and more.

https://salt.security/api-security-trends?

© 2023 Secure D Center Co., Ltd.

API(s)
Why is API security necessary?

https://www.databreachtoday.com/optus-under-1-million-extortion-threat-in-data-breach-a-20142

© 2023 Secure D Center Co., Ltd.

REST API specification

q REST API(s):
§ A request is sent from client to server in the form of a web URL as HTTP GET, POST,

PUT or DELETE request.
§ The response comes from the server in the form of HTML, XML, Image, or JSON format

API protocols and architectures

DELETEGET POST PUT

© 2023 Secure D Center Co., Ltd.

REST: A sample REST API request

API protocols and architectures

HTTP/1.1 200 OK
Server: RESTfulServer/0.1
Cache-Control: no-store
Content-Type: application/json

{ "item": { "id": "00101", "name": "pillow",
"count": 25 "price": { "currency": "USD",
"value": "19.99" } }, }

GET /api/v3/inventory/item/pillow HTTP/1.1
HOST: rest-shop.com
User-Agent: Mozilla/5.0
Accept: application/json

© 2023 Secure D Center Co., Ltd.

REST: HTTP Verbs

API protocols and architectures

HTTP Methods CRUD Description

GET Read Retrieve the complete state of a resource, in some representational form

HEAD Show only header Retrieve the metadata state of a resource such as (Version, Length,
Type) MUST NOT send content in the response.

POST Create Create a new resource

PUT Update Insert a new resource into a store or update an existing, mutable
resource

OPTIONS Check status Retrieve metadata that describes a resource’s available interactions

PATCH Partial Update/Modify The PATCH request only needs to contain the changes to the resource,
not the complete resource(make a partial update).

DELETE Delete Remove the resource from its parent

[11] https://www.rfc-editor.org/rfc/rfc2616.txt

© 2023 Secure D Center Co., Ltd.

REST: HTTP Status

API protocols and architectures

Code Status Description
200 OK Indicates a nonspecific success
201 Created Sent primarily by collections and stores but sometimes also by

controllers, to indicate that a new resource has been created
202 Accepted Sent by controllers to indicate the start of an asynchronous action
204 No Content Indicates that the body has been intentionally left blank
301 Moved Permanently Indicates that a new permanent URI has been assigned to the

client’s requested resource
303 See other Sent by controllers to return results that it considers optional
304 Not Modified Sent to preserve bandwidth (with conditional GET)
307 Temporary Redirect Indicates that a temporary URI has been assigned to the client’s

requested resource

https://www.rfc-editor.org/rfc/rfc2616.txt

© 2023 Secure D Center Co., Ltd.

REST: HTTP Status

API protocols and architectures

Code Status Description

400 Bad Request Indicates a nonspecific client error

401 Unauthorized Sent when the client either provided invalid credentials or forgot to send
them

402 Forbidden Sent to deny access to a protected resource

404 Not Found Sent when the client tried to interact with a URI that the REST API could not
map to a resource

405 Method Not Allowed Sent when the client tried to interact using an unsupported HTTP method

406 Not Acceptable Sent when the client tried to request data in an unsupported media type
format

409 Conflict Indicates that the client attempted to violate resource state

412 Precondition Failed Tells the client that one of its preconditions was not met

415 Unsupported Media Type Sent when the client submitted data in an unsupported media type format

500 Internal Server Error Tells the client that the API is having problems of its own

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

OWASP Top 10 API Risks – What’s new about REST API security 2023?

OWASP API Top 10 (2019) - https://owasp.org/www-project-api-security

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

OWASP Top 10 API Risks – What are the differences between 2019 and 2023?

OWASP API Top 10 (2019)
API1:2019 Broken Object Level Authorization

API2:2019 Broken User Authentication

API3:2019 Excessive Data Exposure

API4:2019 Lack of Resources & Rate Limiting

API5:2019 Broken Function Level Authorization

API6:2019 Mass Assignment

API7:2019 Security Misconfiguration

API8:2019 Injection

API9:2019 Improper Assets Management

API10:2019 Insufficient Logging & Monitoring

OWASP API Top 10 (2023) [RC]
API1:2023 Broken Object Level Authorization

API2:2023 Broken User Authentication

API3:2023 Broken Object Property Level Authorization

API4:2023 Unrestricted Resource Consumption

API5:2023 Broken Function Level Authorization

API6:2023 Server-Side Request Forgery

API7:2023 Security Misconfiguration

API8:2023 Lack of protection from automated threats

API9:2023 Improper Assets Management

API10:2023 Unsafe Consumption of APIs

merge and change to

OWASP API Top 10 (2019) - https://owasp.org/www-project-api-security
OWASP API Top 10 (2023) [RC] - https://github.com/OWASP/API-Security/tree/master/2023/en/src

rename to

(Add) replace

© 2023 Secure D Center Co., Ltd.

API1: Broken Object Level
Authorization

© 2023 Secure D Center Co., Ltd.

API1: Broken Object Level Authorization (What ?)

API Vulnerabilities

q BOLA is a security vulnerability in web applications where the authorization mechanism fails to
properly check a user's permission to perform actions on an object, allowing an attacker to
manipulate object-level permissions and perform unauthorized actions.

q Why use the BOLA instead of IDOR ?
q They differ in the specific way that they allow unauthorized access.

§ IDOR (Insecure Direct Object Reference) refers to the weakness in the application's
security that allows an attacker to access resources they shouldn't be able to access by
directly manipulating the resource ID. This results in the exposure of sensitive data or
functionality to unauthorized users.

§ BOLA, on the other hand, refers to the flaw in the authorization mechanism, where the
application fails to properly check user's authorization to perform certain actions on an
object. This leads to an attacker being able to manipulate the object level permissions and
perform unauthorized actions on the objects.

https://inonst.medium.com/a-deep-dive-on-the-most-critical-api-vulnerability-bola-1342224ec3f2
https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html

© 2023 Secure D Center Co., Ltd.

API1: Broken Object Level Authorization (What ?)

API Vulnerabilities

q What kind of different type of BOLA?

q There are two main types:

§ Based on user ID: The API endpoints receive a user ID and access the user object based on this ID.

For example:

§ Based on object ID: The API endpoint receives an ID of an object which is not a user object.

For example:

https://inonst.medium.com/a-deep-dive-on-the-most-critical-api-vulnerability-bola-1342224ec3f2

/api/endpoint/get_profile?user_id=101

/api/collection/books/sold?book_id=5

© 2023 Secure D Center Co., Ltd.

API1: Broken Object Level Authorization (How ?)

API Vulnerabilities

q BOLA vulnerabilities occur when an API provider allows an API consumer access to resources
they are not authorized to access.

{
"id": "5501",
"first_name": "John",
"last_name": "Doe",
"link": "https://<redact>.com/user/johny.boy.97",
"name": "John Doe",
"dob": "1997-01-31",
"username": "johny.boy.97"

}

GET /api/v1/users/5501

© 2023 Secure D Center Co., Ltd.

API1: Broken Object Level Authorization (How ?)

API Vulnerabilities

GET /api/v1/users/5502

{
"id": "5502",
"first_name": "Malicious",
"last_name": "Hacker",
"link": "https://<redact>.com/user/malicious.hacker.69",
"name": "Malicious Hacker",
"dob": "1969-11-14",
"username": "malicious.hacker.69"

}

HTTP REQUEST

HTTP RESPONSE

© 2023 Secure D Center Co., Ltd.

API1: Broken Object Level Authorization (How ?)

API Vulnerabilities

GET /api/v1/users/5501

GET /api/v1/users/5502

GET /api/v1/users/5501

{
"id": "5501",
"first_name": "John",
"last_name": "Doe",
"link": "https://<redact>.com/user/johny.boy.97",
"name": "John Doe",
"dob": "1997-01-31",
"username": "johny.boy.97"

}

© 2023 Secure D Center Co., Ltd.

API1: Broken Object Level Authorization: Bug bounty real case

API Vulnerabilities
§ https://hackerone.com/reports/1286332
§ https://s3c.medium.com/how-i-hacked-world-wide-tiktok-users-24e794d310d2

q Bounty API on the TikTok ($ 7,500)

© 2023 Secure D Center Co., Ltd.

API1: Broken Object Level Authorization

API Vulnerabilities
§ https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html
§ https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Testing_Automation_Cheat_Sheet.html

q Prevention:
§ Implement proper authorization checks: The application must properly check the user's

authorization to perform an action on an object before allowing the action to take place.

§ Use role-based access control (RBAC): RBAC provides a flexible mechanism for controlling
access to objects by defining roles and permissions. The application can use RBAC to
ensure that a user can only perform actions they are authorized to perform.

§ Use access control lists (ACLs): ACLs can be used to control access to objects by
specifying the permissions for individual users or groups of users.

§ Keep track of user activity: The application should log user activity and alert administrators
when an unauthorized action is performed.

§ Prefer to use random and unpredictable values as GUIDs for records’ IDs

© 2023 Secure D Center Co., Ltd.

API2: Broken User
Authentication

© 2023 Secure D Center Co., Ltd.

API2: Broken User Authentication (What ?)

API Vulnerabilities

q Broken User Authentication is referring to any weakness within the API authentication process.
These vulnerabilities typically occur when an API provider either doesn’t implement an authentication
protection mechanism or implements a mechanism incorrectly.

q In order to be stateless, the provider shouldn’t need to remember the consumer from one request to another.

q For this constraint to work, APIs often require users to undergo a registration process in order to
obtain a unique token.

© 2023 Secure D Center Co., Ltd.

API2: Broken User Authentication (What ?)

API Vulnerabilities

q Users can then include the token within requests to demonstrate that they’re authorized to make such requests.

POST /Login HTTP/1.1
Host: api.target.com
Accept: */*
Accept Encoding: gzip,deflate
Content-Type: application/json

{"Password":"XXXX","Id":"XYZ123","Email":"eren.yeger@mail.com",
"AuthenticationContext":null}

HTTP/1.1 200 OK
Date: Mon, 31 March 2023 16:12:44 Content-Type: application/json

{"code":200,"status":"OK","data":{"AuthToken":"<JWT Token>",
"UserId":"XYZ123",”Detail":{"Data":{}}

© 2023 Secure D Center Co., Ltd.

API2: Broken User Authentication (How ?)

API Vulnerabilities

q The other authentication processes that could have their own set of vulnerabilities include
aspects of the registration system, such as the password reset and multifactor authentication features.

q Classic Authentication Attacks:
q Password Brute-Force Attacks
q Password Reset and Multifactor Authentication Brute-Force Attacks
q Password Spraying
q Weak Password Policy

q Forging Tokens
q Manual Load Analysis > Sequencer module > Manual Load
q Brute-Forcing Predictable Tokens

q JSON Web Token Abuse
q The None algorithm attack
q The JWT Crack Attack

Hacking APIs: Breaking Web Application Programming Interfaces [Corey J. Ball]

© 2023 Secure D Center Co., Ltd.

API2: Broken User Authentication: Multi-factor bypass with HTTP response

API Vulnerabilities
https://agnihackers.medium.com/otp-bypass-through-response-manipulation-beeb467359d8

q OTP BYPASS THROUGH RESPONSE MANIPULATION

© 2023 Secure D Center Co., Ltd.

API2: Broken User Authentication: JSON Web Token Abuse

API Vulnerabilities

q JWT: None Algorithm

© 2023 Secure D Center Co., Ltd.

API2: Broken User Authentication: JSON Web Token Abuse

API Vulnerabilities

q JWT: The JWT Crack Attack

© 2023 Secure D Center Co., Ltd.

API2: Broken User Authentication

API Vulnerabilities

q Prevention:
§ Make sure you know all the possible flows to authenticate to the API

(mobile/web/deep links that implement one-click authentication/etc.)

§ Don't reinvent the wheel in authentication, token generation, or password storage. Use the standards.

§ Credential recovery/forgot password endpoints should be treated as login endpoints in terms of brute force,
rate limiting, and lockout protections.

§ Require re-authentication for sensitive operations (e.g., changing the account owner email address/2FA phone number).

§ Implement anti-brute force mechanisms to mitigate credential stuffing, dictionary attacks, and brute force attacks
on your authentication endpoints. This mechanism should be stricter than the regular rate-limiting mechanisms on your
APIs.

§ Implement account lockout/captcha mechanisms to prevent brute force attacks against specific users. Implement weak-
password checks.

• https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
• https://cheatsheetseries.owasp.org/cheatsheets/Key_Management_Cheat_Sheet.html
• https://owasp.org/www-community/attacks/Credential_stuffing

© 2023 Secure D Center Co., Ltd.

API3: Broken Object
Property Level Authorization

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

OWASP Top 10 API Risks – What are the differences between 2019 and 2023?

OWASP API Top 10 (2019)
API1:2019 Broken Object Level Authorization

API2:2019 Broken User Authentication

API3:2019 Excessive Data Exposure

API4:2019 Lack of Resources & Rate Limiting

API5:2019 Broken Function Level Authorization

API6:2019 Mass Assignment

API7:2019 Security Misconfiguration

API8:2019 Injection

API9:2019 Improper Assets Management

API10:2019 Insufficient Logging & Monitoring

OWASP API Top 10 (2023) [RC]
API1:2023 Broken Object Level Authorization

API2:2023 Broken User Authentication

API3:2023 Broken Object Property Level Authorization

API4:2023 Unrestricted Resource Consumption

API5:2023 Broken Function Level Authorization

API6:2023 Server-Side Request Forgery

API7:2023 Security Misconfiguration

API8:2023 Lack of protection from automated threats

API9:2023 Improper Assets Management

API10:2023 Unsafe Consumption of APIs

merge and change to

OWASP API Top 10 (2019) - https://owasp.org/www-project-api-security
OWASP API Top 10 (2023) [RC] - https://github.com/OWASP/API-Security/tree/master/2023/en/src

© 2023 Secure D Center Co., Ltd.

API3: Broken Object Property Level Authorization (What ?): Excessive data exposure

q Excessive data exposure is
§ When an API endpoint responds with more information than is needed to fulfill a request.
§ This often occurs when the provider expects the API consumer to filter results, which can sometimes result in

responses containing sensitive information or PII (Personally Identifiable Information).
§ When this vulnerability is present, it can be the equivalent of asking someone for their name and having them

respond with their name, date of birth, email address, phone number, and the identification of every other
person they know.

GET /api/v3/account?name=Eren+Yeager

{ "id": "5501", "first_name": "Eren", "last_name": "Yeager", "privilege": "user",
"createdby": ["name": "Grisha Yeager", "id": "2203" "email": " gyeager@titan.com",
"privilege": "super-admin" "admin": true "two_factor_auth": false] }

API Vulnerabilities

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API3: Broken Object Property Level Authorization: Excessive data exposure

© 2023 Secure D Center Co., Ltd.

API3: Broken Object Property Level Authorization: Excessive data exposure (real case)

API Vulnerabilities
https://hackerone.com/reports/1072893

q Sensitive information disclosure to shared access user via streamlabs platform api to Logitech ($ 200)

© 2023 Secure D Center Co., Ltd.

API3: Broken Object Property Level Authorization (What ?): Mass assignment

API Vulnerabilities

q Mass assignment occurs when an API consumer includes more parameters in their requests than the application intended
and the application adds these parameters to code variables or internal objects. In this situation, a consumer may be able to
edit object properties or escalate privileges

{ "User": "scuttleph1sh", "Password": "GreatPassword123" }

{ "id": "1", "first_name": "Scuttle", "last_name": "Phish", "privilege": "user"}

CREATE USER

© 2023 Secure D Center Co., Ltd.

API3: Broken Object Property Level Authorization (What ?): Mass assignment

API Vulnerabilities

{ "User": "scuttleph1sh", "Password": "GreatPassword123" }

CREATE USER

{ "User": "scuttleph1sh", "Password": "GreatPassword123", "privilege": "admin" }

{ "id": "1", "first_name": "Scuttle", "last_name": "Phish", "privilege": "admin"}

© 2023 Secure D Center Co., Ltd.

API3: Broken Object Property Level Authorization: Mass assignment

API Vulnerabilities

© 2023 Secure D Center Co., Ltd.

API3: Broken Object Property Level Authorization: Mass assignment

API Vulnerabilities

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API3: Broken Object Property Level Authorization

q Prevention:
q Excessive data exposure

§ It is not advisable to depend solely on the client side for filtering sensitive data.
§ Avoid using generic methods such as to_json() and to_string(). Instead, cherry-pick specific object

properties you specifically want to return.
§ Implement a schema-based response validation mechanism as an extra layer of security. As part of this

mechanism, define and enforce data returned by all API methods.
§ Keep returned data structures to the bare minimum, according to the business/functional requirements for

the endpoint.

q Mass assignment
§ If possible, avoid using functions that automatically bind a client's input into code variables, internal objects,

or object properties
§ Allow changes only to the object's properties that should be updated by the client.
§ Whitelist only the properties that should be updated by the client.
§ Use built-in features to blacklist properties that should not be accessed by clients.
§ If applicable, explicitly define and enforce schemas for the input data payloads.

• https://cheatsheetseries.owasp.org/cheatsheets/Mass_Assignment_Cheat_Sheet.html
• https://github.com/OWASP/API-Security/blob/master/2019/en/src/0xa3-excessive-data-exposure.md

© 2023 Secure D Center Co., Ltd.

API4: Unrestricted Resource
Consumption

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API4: Unrestricted Resource Consumption (What ?)

q Rate limiting plays an important role in the monetization and availability of APIs. Without limiting the number of
requests consumers can make, an API provider’s infrastructure could be overwhelmed by the requests

q Too many requests without enough resources will lead to the provider’s systems crashing and becoming unavailable
a denial of service (DoS) state.

q Besides potentially DoS-ing an API, an attacker who bypasses rate limits can cause additional costs for the API
provider. Many API providers monetize their APIs by limiting requests and allowing paid customers to request more
information

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API4: Unrestricted Resource Consumption (How ?)

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API4: Unrestricted Resource Consumption (How ?)

4 KB

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API4: Unrestricted Resource Consumption (How ?)

More than 20 GB

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API4: Unrestricted Resource Consumption: Rate limit

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API4: Unrestricted Resource Consumption: Rate limit

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API4: Unrestricted Resource Consumption: Rate limit

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API4: Unrestricted Resource Consumption: Rate limit

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API4: Unrestricted Resource Consumption: Rate limit

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities
https://hackerone.com/reports/827484

q Missing rate limit for current password field (Award 200$)

API4: Unrestricted Resource Consumption: Rate limit

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities
https://medium.com/@vishnu0002/account-takeover-via-otp-bruteforce-apigee-api-9b5481c642df

q Account Takeover via OTP Brute force (Apigee API)

API4: Unrestricted Resource Consumption: Rate limit

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API4: Unrestricted Resource Consumption

• https://cheatsheetseries.owasp.org/cheatsheets/Web_Service_Security_Cheat_Sheet.html#availability
• https://cheatsheetseries.owasp.org/cheatsheets/GraphQL_Cheat_Sheet.html#dos-prevention
• https://cheatsheetseries.owasp.org/cheatsheets/GraphQL_Cheat_Sheet.html#mitigating-batching-attacks

q Prevention:
§ Use container-based solutions that make it easy to limit memory, CPU, number of restarts, file descriptors, and

processes.
§ Define and enforce a maximum size of data on all incoming parameters and payloads, such as maximum length

for strings, maximum number of elements in arrays, and maximum upload file size (regardless of whether it is
stored locally or in cloud storage).

§ Implement a limit on how often a client can interact with the API within a defined timeframe (rate limiting).
§ Rate limiting should be fine tuned based on the business needs. Some API Endpoints might require stricter

policies.
§ Limit/throttle how many times or how often a single API client/user can execute a single operation (e.g. validate

an OTP, or request password recovery without visiting the one-time URL).
§ Add proper server-side validation for query string and request body parameters, specifically the one that controls

the number of records to be returned in the response.
§ Configure spending limits for all service providers/API integrations. When setting spending limits is not possible,

billing alerts should be configured instead.

© 2023 Secure D Center Co., Ltd.

API5: Broken Function Level
Authorization

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API5: Broken Function Level Authorization (What ?)

q Broken function level authorization (BFLA) is a vulnerability where a user of one role or group is able to access the
API functionality of another role or group. API providers will often have different roles for different types of accounts,
such as public users, merchants, partners, administrators, and so on.

q BFLA is present if you are able to use the functionality of another privilege level or group.

q BFLA is similar to BOLA, except instead of an authorization problem involving accessing resources, it is an
authorization problem for performing actions.

q If an API has different privilege levels or roles, it may use different endpoints to perform privileged actions. For
example, a bank may use the /{user}/account/balance endpoint for a user wishing to access their account
information and the /admin/account/{user} endpoint for an administrator wishing to access user account
information.

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API5: Broken Function Level Authorization (How ?)

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API5: Broken Function Level Authorization (How ?)

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API5: Broken Function Level Authorization (How ?)

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API5: Broken Function Level Authorization (How ?)

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API5: Broken Function Level Authorization

q Prevention:
§ The enforcement mechanism(s) should deny all access by default, requiring explicit grants to specific roles for

access to every function.

§ Review your API endpoints against function level authorization flaws, while keeping in mind the business logic of
the application and groups hierarchy.

§ Make sure that all of your administrative controllers inherit from an administrative abstract controller that
implements authorization checks based on the user's group/role.

§ Make sure that administrative functions inside a regular controller implement authorization checks based on the
user's group and role.

• https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html
• https://owasp.org/www-community/Access_Control
• https://owasp.org/www-community/attacks/Forced_browsing

© 2023 Secure D Center Co., Ltd.

API6: Server-Side Request
Forgery

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API6: Server-Side Request Forgery (What ?)

q Server-Side Request Forgery (SSRF) is a vulnerability that allows an attacker to use an application's server-side
functions to read or update internal resources.

q To exploit this vulnerability, an attacker inserts a URL into an input field to direct the server to access or send data
to the specified URL. Upon receiving the URL, the server sends a request to that URL, using its own interface (IP)
to make the request.

q This allows the attacker to access internal resources that are otherwise protected from external access.

q Typically, SSRF is used to scan internal ports or extract data from within the network.

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API6: Server-Side Request Forgery (What ?)

POST /vuln/img/upload

url=image.png

HTTP response with the content body of the image file

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API6: Server-Side Request Forgery (What ?)

POST /vuln/img/upload

url=image.png

POST /vuln/img/upload

url=https://127.0.0.1/internal/path

HTTP response with the content body of the image file

GET /internal/path

The response leaked internal information that was not
intended to be accessible through the public network.

Internal response

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API6: Server-Side Request Forgery: Demo

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API6: Server-Side Request Forgery: Demo

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API6: Server-Side Request Forgery: Demo

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API6: Server-Side Request Forgery: Demo

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API6: Server-Side Request Forgery: Real Case

q Bug bounty: Unauthenticated SSRF in jira.tochka.com leading to RCE in confluence.bank24.int ($1,000)

https://hackerone.com/reports/713900

Jira at https://jira.tochka.com is
vulnerable to SSRF in the
/plugins/servlet/gadgets/makeRequest
resource - CVE-2019-8451. Anyone on
the internet can make it issue arbitrary
HTTPS requests and read responses.

Root cause
•Jira uses whitelist to determine allowed
URLs.
•Jira itself is always whitelisted
(https://jira.tochka.com)
•Filter could be tricked by using URL in form
of https://jira.tochka.com:443@example.com

https://jira.tochka.com/

© 2023 Secure D Center Co., Ltd.

URI (s)

q REST APIs use Uniform Resource Identifiers (URIs) to address resources. On
today’s Web, URI designs that clearly communicate the API’s resource model like:

• http://api.knowledge.sharing.com/th/bangkok/secure-d
q URI Format

• The rules presented pertain to the format of a URI. RFC 3986 defines the generic
URI syntax as shown below:

• URI = scheme ":" ["//" authority] path ["?" query] ["#" fragment] [9]

API protocols and architectures
[9] https://en.wikipedia.org/wiki/URL

http
https

ftp
mailto

file

data

subcomponent are consits of username:password but,
rightnow deprecated due to the application should not cleartext data

Providing direction to secondary resource, such as section heading

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API6: Server-Side Request Forgery: Real Case

q Bug bounty: Unauthenticated SSRF in jira.tochka.com leading to RCE in confluence.bank24.int ($1,000)

https://hackerone.com/reports/713900

This bug could be used to send
requests to an internal Confluence
server https://confluence.bank24.int
like so:

Confluence at
https://confluence.bank24.int,
uses a vulnerable version of a
Widget Connector plugin. This
vulnerability leads to an RCE
(CVE-2019-3396).

https://confluence.bank24.int/
https://confluence.bank24.int/

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API6: Server-Side Request Forgery

q Prevention:
§ Isolate the resource fetching mechanism in your network: usually these features are aimed to retrieve remote

resources and not internal ones.

§ Whenever possible, use allow lists of
o Remote origins users are expected to download resources from (e.g., Google Drive, Gravatar, etc.)
o URL schemes and ports
o Accepted media types for a given functionality

§ Disable the support for the following of the HTTP redirections in your web client in order to prevent the bypass of
the input validation.

§ Use a well-tested and maintained URL parser to avoid issues caused by URL parsing inconsistencies.

§ Validate and sanitize all client-supplied input data.

§ Do not send raw responses to clients.

https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html#allow-list-vs-block-list

© 2023 Secure D Center Co., Ltd.

API7: Security Misconfiguration

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API7: Security Misconfiguration (What ?)

q Security misconfigurations include all the mistakes developers could make within the supporting security
configurations of an API.

q If a security misconfiguration is severe enough, it can lead to sensitive information exposure or a complete
system takeover.

q Security misconfigurations are really a set of weaknesses that includes misconfigured headers, misconfigured
transit encryption, the use of default accounts, the acceptance of unnecessary HTTP methods, a lack of input
sanitization, and verbose error messaging

https://github.com/OWASP/API-Security/blob/master/2023/en/src/0xa7-security-misconfiguration.md

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API7: Security Misconfiguration (How ?)

q Error messages include stack traces, or expose other sensitive information

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API7: Security Misconfiguration (How ?): Real Case

q Uploading files to api.techprep.fb.com (Bug bounty)

https://ysamm.com/?p=12

1-Sign up in techprep.fb.com
2-After logging in, the attacker intercept
any request to api.techprep.fb.comthen
get the _Applicationid
3-The attacker make a POST request
to api.techprep.fb.com/parse/files/FILE
NAME.EXT with the header X-Parse-
Application-Id:+(_Applicationid)
and the Content-Type: header then the
file content (HTML File or image)
The respond of the request contains
the file path

http://techprep.fb.com/
http://api.techprep.fb.com/
http://api.techprep.fb.com/parse/files/FILENAME.EXT
http://api.techprep.fb.com/parse/files/FILENAME.EXT

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API7: Security Misconfiguration (How ?) Real Case

q CORS: The API endpoint allows for the sending of credentials to other domains. [Bug bounty]

https://blog.securitybreached.org/2017/10/10/exploiting-insecure-cross-origin-resource-sharing-cors-api-artsy-net/

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API7: Security Misconfiguration

q Prevention:
§ Ensure that all API communications from the client to the API server and any downstream/upstream

components happen over an encrypted communication channel (TLS), regardless of whether it is an
internal or public-facing API.

§ Be specific about which HTTP verbs each API can be accessed by: all other HTTP verbs should be
disabled (e.g., HEAD).

§ Implement a proper Cross-Origin Resource Sharing (CORS) policy on APIs expected to be accessed
from browser-based clients (e.g., web app front-ends).

§ Ensure all servers in the HTTP server chain (e.g., load balancers, reverse and forward proxies, and back-
end servers) process incoming requests in a uniform manner to avoid desync issues.

§ Where applicable, define and enforce all API response payload schemas, including error responses, to
prevent exception traces and other valuable information from being sent back to attackers.

[NIST SP 800-123, Guide to General Server Security] https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-123.pdf
https://github.com/OWASP/API-Security/blob/master/2023/en/src/0xa7-security-misconfiguration.md

© 2023 Secure D Center Co., Ltd.

API8: Lack of Protection from
Automated Threats

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API8: Lack of Protection from Automated Threats (What ?)

q Automated threats have become more profitable, smarter and harder to protect from, and APIs are often used
as an easy target for them.

q Traditional protections, such as rate limiting, and captchas become less effective over time.

q Vulnerable APIs don't necessarily have implementation bugs. They simply expose a business flow

q An API endpoint is vulnerable if it exposes a business-sensitive functionality and allows an attacker to harm the
business by accessing it in an excessive automated manner.

https://github.com/OWASP/API-Security/blob/master/2023/en/src/0xa8-lack-of-protection-from-automated-threats.md
https://owasp.org/www-project-automated-threats-to-web-applications/

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API8: Lack of Protection from Automated Threats (How ?)

q Automated threats: Example

GET /api/v1/shop/ps5/stocks

{"_id":"PS501","product_name":"Play Station 5","stocks":"100"}

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API8: Lack of Protection from Automated Threats (How ?)

q Automated threats: Example

GET /api/v1/shop/ps5/stocks

{"_id":"PS501","product_name":"Play Station 5","stocks":"100"}{"status":"success","product_name":"Play Station 5","stocks":"100"}

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API8: Lack of Protection from Automated Threats (How ?)

q Automated threats: Example

GET /api/v1/shop/ps5/stocks

{"status":"out of stock","product_name":"Play Station 5","stocks":"0"}

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API8: Lack of Protection from Automated Threats (How ?)

q Rate limit with implement captcha failure

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API8: Lack of Protection from Automated Threats

q Prevention:
§ The mitigation planning should be done in two layers:

• Business - identify the business flows that might harm the business if they are excessively used.
• Engineering - choose the right protection mechanisms to mitigate the business risk.

§ Some of the protection mechanisms are more simple while others are more difficult to implement.
The following methods are used to slow down automated threats:

• Device fingerprinting: denying service to unexpected client devices (e.g., headless browsers)
tends to make threat actors use more sophisticated solutions, thus more costly for them

• Human detection: using either captcha or more advanced biometric solutions (e.g., typing
patterns)

• Non-human patterns: analyze the user flow to detect non-human patterns (e.g., the user
accessed the "add to cart" and "complete purchase" functions in less than one second)

• Consider blocking IP addresses of Tor exit nodes and well-known proxies

§ Secure and limit access to APIs that are consumed directly by machines (such as developer and B2B
APIs). They tend to be an easy target for attackers because they often don't implement all the required
protection mechanisms.

• https://owasp.org/www-project-automated-threats-to-web-applications
• https://www.owasp.org/index.php/Logging_Cheat_Sheet
• https://www.owasp.org/index.php/OWASP_Proactive_Controls

© 2023 Secure D Center Co., Ltd.

API9: Improper Assets
Management

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities
API9: Improper Assets Management (What ?)

q Improper assets management takes place when an organization exposes APIs that are either retired or still
in development.

q As with any software, old API versions are more likely to contain vulnerabilities because they are no longer
being patched and upgraded

q Can lead to other vulnerabilities, such as excessive data exposure, information disclosure, mass assignment,
improper rate limiting, and API injection.

q You can discover improper assets management by paying close attention to outdated API documentation,
changelogs, and version history on repositories.

© 2023 Secure D Center Co., Ltd.

q The GraphQL IDE interface provides documentation and permissions for users to query, mutate, update,
or delete data within the IDE.

q The alias for the GraphQL endpoint IDE is
as follows:
§ /graphiql
§ /console
§ /v1/graphiql
§ /v2/graphiql

q Additionally, the IDE offers variables,
query, schema, and structure.

API Vulnerabilities
API9: Improper Assets Management (How ?)

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities
API9: Improper Assets Management (How ?)

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities
API9: Improper Assets Management (How ?)

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities
API9: Improper Assets Management (How ?)

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities
API9: Improper Assets Management (How ?)

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities
API9: Improper Assets Management (How ?)

https://infosecwriteups.com/bug-bounty-broken-api-authorization-d30c940ccb42

q API authorization bug in a private program: academy.target.com/api/docs

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities
API9: Improper Assets Management (How ?)

https://infosecwriteups.com/bug-bounty-broken-api-authorization-d30c940ccb42

q API authorization bug in a private program: academy.target.com/api/docs

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities
API9: Improper Assets Management

q Prevention:
§ Inventory all API hosts and document important aspects of each one of them, focusing on the API

environment (e.g. production, staging, test, development), who should have network access to the host
(e.g. public, internal, partners) and the API version.

§ Inventory integrated services and document important aspects such as their role in the system, what data
is exchanged (data flow), and their sensitivity.

§ Make API documentation available only to those authorized to use the API.

§ Avoid using production data with non-production API deployments. If this is unavoidable, these endpoints
should get the same security treatment as the production ones.

§ When newer versions of APIs include security improvements, perform a risk analysis to inform the
mitigation actions required for the older versions. For example, whether it is possible to backport the
improvements without breaking API compatibility or if you need to take the older version out quickly and
force all clients to move to the latest version.

https://github.com/OWASP/API-Security/blob/master/2023/en/src/0xa9-improper-assets-management.md

© 2023 Secure D Center Co., Ltd.

API10: Unsafe Consumption
of APIs

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API10: Unsafe Consumption of APIs (What ?)

q Developers tend to trust data received from third-party APIs more than user input without verify in their
endpoints which interact with external or third-party APIs

q API provider does not properly validate and sanitize data gathered from other APIs prior to processing it or
passing it to downstream components.

q Blindly follows redirection

q Allows the client to interact APIs with over an unencrypted channel or insecure communication protocol

q API provider does not limit the number of resources available to process third-party services responses.

q API provide does not implement timeouts for interactions with third-party services;

q The attacker tries to identify the technology stack layer. Once the attacker understands how it works, they may
attempt to inject malicious code.

https://github.com/OWASP/API-Security/blob/master/2023/en/src/0xaa-unsafe-consumption-of-apis.md

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API10: Unsafe Consumption of APIs (How ?)

q Interacts with other APIs over an unencrypted channel;

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API10: Unsafe Consumption of APIs (How ?)

q The outdated API endpoint did not validate data, leading to SQL injection vulnerabilities.

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API10: Unsafe Consumption of APIs (How ?)

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities
API10: Unsafe Consumption of APIs (How ?)

v1

v2

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities
API10: Unsafe Consumption of APIs (How ?)

https://twitter.com/chybeta/status/1176165964196376576
https://jira.atlassian.com/browse/JRASERVER-69793

© 2023 Secure D Center Co., Ltd.

API Vulnerabilities

API10: Unsafe Consumption of APIs

q Prevention:
§ When evaluating service providers, assess their API security posture.
§ Ensure all API interactions happen over a secure communication channel (TLS).
§ Always validate and properly sanitize data received from integrated APIs before using it.
§ Maintain an allow list of well-known locations integrated APIs may redirect yours to do

not blindly follow redirects.

https://cheatsheetseries.owasp.org/cheatsheets/Web_Service_Security_Cheat_Sheet.html
https://owasp.org/www-community/Injection_Flaws
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html

© 2023 Secure D Center Co., Ltd.

Questions?
Contact us at info@secure-d.tech

