
Top 10
CI/CD Security Risks

OWASP Bangkok Chapter
2600 Thailand Monthly Meeting

Natworpong Loyswai

Chief Technology Officer

21st July 2023

1

Chief Technology Officer
@Shippusu Co., Ltd.

Natworpong
Loyswai

21st July 2023 WHOAMI

● Former Microsoft Learn Student Ambassador

● B.Sc. IT @KMUTT

SHIPS

Boonnithi
Jiaramaneepinit Sakulthip

Rassameecharoentham
Chief Executive Officer

Chief Sales Officer

Worawit
Makkasan

Senior Developer

21st July 2023

● Push myself to learn new things

● Sharing about security risks in your CI/CD pipeline
○ What are CI/CD major security risks?

○ How are they being used for exploitation?

○ What are impacts?

○ Recommendation about how to protect yourself and prevent them?

TODAY I’M HERE TO…

4

Continuous

Integration

5

(CI/CD)

Continuous

Delivery/

6

DevOps loop

HOWEVER, CI/CD IS NOT A PIPELINE

7

HOWEVER, CI/CD IS NOT A PIPELINE

A set of best practices and techniques to automate and streamline
the process of building, testing, and deploying application.

8

CI/CD Pipeline

9

BEFORE CI/CD

10

Continuous
Integration

11

12

13

CI/CD PITFALL

There’s more but one example is…

14

CI/CD PITFALL

There’s more but one example is…
Limited environment challenges

15

CI/CD PITFALL

There’s more but one example is…
Limited environment challenges

● Limited resources offered to testers.

16

CI/CD PITFALL

There’s more but one example is…
Limited environment challenges

● Limited resources offered to testers.

● Shared testing environment.

17

CI/CD PITFALL

There’s more but one example is…
Limited environment challenges

● Limited resources offered to testers.

● Shared testing environment.

● Try Isolation/Containerization.

18

19

Top 10 CI/CD Security Risks

20

21

CICD-SEC-1: Insufficient Flow Control Mechanisms

CICD-SEC-2: Inadequate Identity and Access Management

CICD-SEC-3: Dependency Chain Abuse

CICD-SEC-4: Poisoned Pipeline Execution (PPE)

CICD-SEC-5: Insufficient PBAC (Pipeline-Based Access Controls)

CICD-SEC-6: Insufficient Credential Hygiene

CICD-SEC-7: Insecure System Configuration

CICD-SEC-8: Ungoverned Usage of 3rd Party Services

CICD-SEC-9: Improper Artifact Integrity Validation

CICD-SEC-10: Insufficient Logging and Visibility

Case Study

22

Mercedes-Benz onboard logic unit (OLU) source code leaks online

23

Mercedes-Benz onboard logic unit (OLU) source code leaks online

OLU is a component that sits between the car's hardware and software,
and "connects vehicles to the cloud." which "simplifies technical access
and the management of live vehicle data" and allows third-party
developers to create apps that retrieve data from Mercedes vans.

24

Mercedes-Benz onboard logic unit (OLU) source code leaks online

Unsecured GitLab installation leaks OLU code

● Using something as simple as Google dorks.
● Kottmann says Daimler failed to implement an account confirmation

process, which allowed to register an account on the company's official
GitLab server using a non-existent Daimler corporate email.

● Threat intelligence firm Under the Breach which also reviewed the data, told
ZDNet they discovered passwords and API tokens for Daimler's internal
systems.

25

Mercedes-Benz onboard logic unit (OLU) source code leaks online

26

Mercedes-Benz onboard logic unit (OLU) source code leaks online

Case Study

27

Bypassing required reviews using GitHub Actions

28

Bypassing required reviews using GitHub Actions

29

Bypassing required reviews using GitHub Actions

30

Bypassing required reviews using GitHub Actions

31

Bypassing required reviews using GitHub Actions

● GitHub Actions is installed by default on any GitHub organization, and on all of
its repositories.

● Any user that can push code to the repo (Write permissions or higher), can
create a workflow that runs when code is pushed.

● With each workflow run, GitHub creates a unique GitHub token
(GITHUB_TOKEN) to use in the workflow to authenticate against the repo.

● Anyone with write access to a repository can modify the permissions granted
to the GITHUB_TOKEN, adding or removing access as required, by editing the
permissions key in the workflow file.

32

Bypassing required reviews using GitHub Actions

33

Bypassing required reviews using GitHub Actions

34

Bypassing required reviews using GitHub Actions

● Mitigation
○ Update: January 2022
○ Organization admins can now disallow GitHub Actions from approving

pull requests.
○ Organization-wide setting default to allows Actions to approve pull

requests in existing organizations, and disallows it in newly created orgs.
○ Disable under Organization Settings.

CICD-SEC-1

35

Insufficient Flow Control Mechanisms

CICD-SEC-1: Insufficient Flow Control Mechanisms

The ability of an attacker that has obtained permissions to a

system within the CI/CD process (SCM, CI, Artifact repository, etc.)

to single handedly push malicious code or artifacts down the

pipeline, due to a lack in mechanisms that enforce additional

approval or review.

36

CICD-SEC-1: Insufficient Flow Control Mechanisms

Example

37

CICD-SEC-1: Insufficient Flow Control Mechanisms

38

CI/CD Goat architecture

39

CICD-SEC-1: Insufficient Flow Control Mechanisms

Dodo

40

Example

CICD-SEC-1: Insufficient Flow Control Mechanisms

● Impact
○ The attacker can ship malicious artifact through the pipeline - potentially

all the way to production - without any approval or review.

○ Push code which get automatically deployed through the pipeline.

○ Push code and then manually trigger a pipeline.

○ Directly push code to a library, which is used by a production system.

○ Abuse an auto-merge rule in the CI.

○ Abuse insufficient branch protection rules.

41

CICD-SEC-1: Insufficient Flow Control Mechanisms

● Recommendation
○ Establish pipeline flow control mechanisms to ensure that no single entity is

able to ship sensitive code and artifacts through the pipeline without external
verification or validation.

○ Configure branch protection rules and avoid exclusion of entities.
○ Limit the usage of auto-merge rules and ensure that they are applicable to the

minimal amount of contexts.
○ Where applicable, prevent triggering production build and deployment

pipelines without additional approval or review.
○ Prevent artifacts that have been uploaded by other accounts from flowing

through the pipeline without secondary review and approval.

42

CICD-SEC-2

43

Inadequate Identity and Access Management

CICD-SEC-2: Inadequate Identity and Access Management

Stem from the difficulties in managing the vast amount of

identities spread across the different systems in the engineering

ecosystem and the existence of poorly managed identities -

increases the potential and the extent of damage of accounts

compromise.

44

CICD-SEC-2: Inadequate Identity and Access Management

Overly permissive identities: Ensuring each identity has been granted only the permissions

required and only against the actual repositories it needs to access.

Stale identities: Identities that are not active or no longer require access but have not had

account against all CI/CD systems deprovisioned.

Local identities: Local accounts create challenges in enforcing consistent security policies

(e.g. password policy, lockout policy, MFA) as well as properly deprovisioning access across

all systems.

45

CICD-SEC-2: Inadequate Identity and Access Management

External identities: Account with address from a domain not owned or managed by

organization.

Self-registered identities: In systems where self-registration is allowed, it is often the case

that a valid domain address is the only prerequisite for self-registration and access to CI/CD.

Shared identities: Identities shared between human users / applications / both humans and

applications increase the footprint of their credentials as well as create challenges having to

do with accountability in case of a potential investigation.

46

CICD-SEC-2: Inadequate Identity and Access Management

Hearts

47

Example

CICD-SEC-2: Inadequate Identity and Access Management

● Impact
○ Lack of strong identity and access management practice, leads to a

state where compromising nearly any user account on any system.

○ Overly permissive accounts.

○ Could grant powerful capabilities to the environment.

○ Create investigation challenges.

48

CICD-SEC-2: Inadequate Identity and Access Management

● Recommendation
○ Conduct a continuous analysis and mapping of all identities across all

systems within the engineering ecosystem.
○ Map the identity provider, level of permissions granted and level of

permissions actually used.
○ Refrain from allowing users to self-register to systems, and grant

permission on an as-needed basis.
○ Avoid creating local user accounts. Instead, create and manage

identities using a centralized organization component (IdP).

49

CICD-SEC-2: Inadequate Identity and Access Management

● Recommendation
○ Avoid creating local user accounts. Instead, create and manage

identities using a centralized organization component (IdP).

○ Prevent employees from using any address which belongs to a domain

not owned and managed by the organization.

○ Avoid using shared accounts. Create dedicated accounts for each

specific context, and grant the exact set of permissions required for the

context in question.

50

CICD-SEC-3

51

Dependency Chain Abuse

CICD-SEC-3: Dependency Chain Abuse

The ability of an attacker to abuse flaws relating to how

engineering workstations and build environments fetch code

dependencies, results in a malicious package inadvertently being

fetched and executed locally when pulled.

52

CICD-SEC-3: Dependency Chain Abuse

Dependency confusion: Publication of malicious packages in public repositories with the

same name as internal package names.

Dependency hijacking: Obtaining control of the account of a package maintainer on the

public repository, in order to upload a new, malicious version of a widely used package.

Typosquatting: Publication of malicious packages with similar names to those of popular

packages in the hope that a developer will misspell a package name and unintentionally

fetch the typosquatted package.

Brandjacking: Publication of malicious packages in a manner that is consistent with the

naming convention or other characteristics of a specific brand’s package.

53

CICD-SEC-3: Dependency Chain Abuse

Example

54

Twiddledum

CICD-SEC-3: Dependency Chain Abuse

● Impact
○ Executing malicious code (RCE) on a host pulling the package, can be

leveraged many ways such as credentials theft and lateral movement

within the environment.

55

CICD-SEC-3: Dependency Chain Abuse

● Recommendation
○ Any client pulling code packages should not be allowed to fetch

packages directly from the internet or untrusted sources.

○ Ensure all packages are pulled through an internal proxy rather than

directly from the internet.

○ Enable checksum verification and signature verification for pulled

packages.

○ Avoid configuring clients to pull the latest version of a package.

56

CICD-SEC-3: Dependency Chain Abuse

● Recommendation
○ Ensure that a separate nonsensitive context exists for scripts executing

as part of a package installation.

○ Ensure that internal projects always contain configuration files of

package managers (for example .npmrc in NPM) to override any

insecure configuration.

○ Ensure that an appropriate level of focus is placed around detection,

monitoring and mitigation.

57

CICD-SEC-4

58

Poisoned Pipeline Execution (PPE)

CICD-SEC-4: Poisoned Pipeline Execution (PPE)

The ability of an attacker with access to source control systems

and manipulate the build process by injecting malicious

code/commands into the build pipeline configuration, then run

malicious code as part of the build process.

59

CICD-SEC-4: Poisoned Pipeline Execution (PPE)

Direct PPE (D-PPE): Attacker modifies the CI config file in a repository they have access to,

either by pushing the change directly to an unprotected remote branch on the repo, or by

submitting a PR with the change from a branch or a fork.

Indirect PPE (I-PPE): Attacker poison the pipeline by injecting malicious code into files

referenced by the pipeline configuration file.

Public-PPE (3PE): Attacker has public access and can contribute to repository while CI

pipeline runs unreviewed code suggested by anonymous users.

60

CICD-SEC-4: Direct Poisoned Pipeline Execution (D-PPE)

61

CICD-SEC-4: Indirect Poisoned Pipeline Execution (I-PPE)

62

CICD-SEC-4: Public Poisoned Pipeline Execution (3PE)

63

Caterpillar

Example

CICD-SEC-4: Poisoned Pipeline Execution (PPE)

● Impact
○ Provides the attacker with the same abilities and level of access as the

build job.

○ Access to any secret available to the CI job

○ Access to external assets the job node has permissions to

○ Ability to ship code and artifacts further down the pipeline

○ Ability to access additional hosts and assets in the environment of the

job node

64

CICD-SEC-4: Poisoned Pipeline Execution (PPE)

● Recommendation
○ Preventing and mitigating the PPE attack vector involves multiple

measures spanning across both SCM and CI systems
○ Unreviewed code are executed on isolated nodes, not exposed to

sensitive environments
○ Refrain from running pipelines originating from forks
○ Has a correlating branch protection rule
○ CI configuration file must be reviewed before the pipeline runs
○ Each pipeline should only have access to the credentials it needs to fulfill

its purpose

65

CICD-SEC-5

66

Insufficient PBAC (Pipeline-Based Access Controls)

CICD-SEC-5: Insufficient PBAC (Pipeline-Based Access Controls)

The attacker’s ability to abuse the overly permission granted to

the pipeline for moving laterally within or outside the CI/CD

system.

67

CICD-SEC-5: Insufficient PBAC (Pipeline-Based Access Controls)

68

Cheshire Cat

Example

CICD-SEC-5: Insufficient PBAC (Pipeline-Based Access Controls)

● Impact
○ Provides the attacker with the access to secrets, underlying host and

connect to any of the systems the pipeline in question has access to

○ Leads to exposure of confidential data

○ Lateral movement within the CI environment

○ Potentially accessing servers and systems outside the CI environment

○ Deployment of malicious artifacts down the pipeline

69

CICD-SEC-5: Insufficient PBAC (Pipeline-Based Access Controls)

● Recommendation
○ Do not use a shared node for pipelines with different levels of sensitivity /

that require access to different resources.
○ Shared nodes should be used only for pipelines with identical levels of

confidentiality.
○ Ensure that pipeline to have access to only the secrets it requires.
○ Revert the execution node to its pristine state after each pipeline

execution.
○ Granted OS permissions on the execution node according to the

principle of least privilege

70

CICD-SEC-5: Insufficient PBAC (Pipeline-Based Access Controls)

● Recommendation
○ Ensure the execution node is appropriately patched.

○ Ensure network segmentation in the environment which allow the

execution node to access only the resources it requires within the

network.

○ CI/CD pipeline jobs should have limited permissions on the controller

node.

○ Where applicable, run pipeline jobs on a separate, dedicated node.

71

CICD-SEC-6

72

Insufficient Credential Hygiene

CICD-SEC-6: Insufficient Credential Hygiene

The attacker’s ability to obtain and use various secrets and

tokens spread throughout the pipeline due to flaws having to do

with access controls around the credentials, insecure secret

management and overly permissive credentials.

73

CICD-SEC-6: Insufficient Credential Hygiene

Code containing credentials being pushed to one of the branches of an SCM repository:

Credentials are exposed to anyone with read access to the repository, and even if deleted

from the branch it was pushed into

Credentials used insecurely inside the build and deployment processes: Insecure used to

access code repositories, read from and write to artifact repositories, and deploy resources

and artifacts to production environments.

Credentials in container image layers: Credentials that were only required for building the

image, still exist in one of the image layers.

74

CICD-SEC-6: Insufficient Credential Hygiene

Credentials printed to console output: Credentials exposed in clear-text in logs, available to

anyone with access to the build results to view. These logs can potentially flow to log

management systems, expanding their exposure surface.

Unrotated credentials: Failing to rotate credentials results in a constantly growing amount of

people and artifacts that are in possession of valid credentials. (“If it isn’t broken, don’t fix it”)

75

CICD-SEC-6: Insufficient Credential Hygiene

76

Duchess

Example

CICD-SEC-6: Insufficient Credential Hygiene

● Impact
○ Credentials are the most sought-after object by adversaries, putting

high-value resources of many organizations at the risk of compromise

due the exposure of their credentials.

○ Deploying malicious code and artifacts through the pipeline.

○ Lateral movement through environment or out of CI/CD context.

77

CICD-SEC-6: Insufficient Credential Hygiene

● Recommendation
○ Establish procedures to continuously map credentials found across the different systems in

the engineering ecosystem - from code to deployment.
○ Ensure each set of credentials follows the principle of least privilege.
○ Avoid sharing the same set of credentials across multiple contexts.
○ Prefer using temporary credentials over static credentials.
○ Periodically rotate all static credentials and detect stale credentials.
○ Configure usage of credentials to be limited to predetermined conditions (like scoping to a

specific source IP or identity
○ Detect secrets pushed to and stored on code repositories.
○ revent secrets from being printed to console outputs of future builds.
○ Verify that secrets are removed from any type of artifact.

78

CICD-SEC-7

79

Insecure System Configuration

CICD-SEC-7: Insecure System Configuration

Stem from flaws in the security settings, configuration and

hardening of the different systems across the pipeline (e.g. SCM,

CI, Artifact repository)

80

CICD-SEC-7: Insecure System Configuration

● Potential hardening flaws:
○ Using an outdated version or lacking important security patches.

○ Overly permissive network access controls.

○ Using default set of configurations which is not secure and requires

optimization.

81

CICD-SEC-7: Insecure System Configuration

Example

82

Mercedes-Benz onboard logic unit (OLU) source code leaks online

CICD-SEC-7: Insecure System Configuration

● Impact
○ A security flaw in one of the CI/CD systems may be leveraged by an

adversary to obtain unauthorized access to the system or worse.

○ Compromise the system and access the underlying OS.

○ Abused by an attacker to manipulate legitimate CI/CD flows.

○ Obtain sensitive tokens and potentially access production environments.

○ Move laterally within the environment and outside the context of CI/CD

systems.

83

CICD-SEC-7: Insecure System Configuration

● Recommendation
○ Maintain an inventory of systems and versions in use, including mapping of a

designated owner for each system.
○ Continuously check for known vulnerabilities in these components. If a security patch

is available, update the vulnerable component.
○ Consider removing/disabling the vulnerable component/system when security patch

is unavailable.
○ Ensure network access to the systems is aligned with the principle of least access.
○ Establish a process to periodically review all system configurations.
○ Ensure permissions to the pipeline execution nodes are granted according to the

principle of least privilege.

84

CICD-SEC-8

85

Ungoverned Usage of 3rd Party Services

CICD-SEC-8: Ungoverned Usage of 3rd Party Services

The extreme ease with which a 3rd party service can be granted

access to resources in CI/CD systems, effectively expanding the

attack surface of the organization.

86

CICD-SEC-8: Ungoverned Usage of 3rd Party Services

● SCM - GitHub SAAS - 3rd party applications can be connected

through one or more of these 5 methods
○ GitHub Application

○ OAuth application

○ Provisioning of an access token provided to the 3rd party application

○ Provisioning of an SSH key provided to the 3rd party application.

○ Configuring webhook events to be sent to the 3rd party.

87

CICD-SEC-8: Ungoverned Usage of 3rd Party Services

88

Dormouse

Example

CICD-SEC-8: Ungoverned Usage of 3rd Party Services

● Impact
○ Compromise of a single 3rd party can be leveraged to cause damage

far outside the scope of the system the 3rd party is connected to.

○ 3rd party with write permissions on a repository, can be leveraged by an

adversary to push and run malicious code on the build system.

○ Organizations are only as secure as the 3rd parties they implement.

○ Lack of governance, visibility, RBAC, least privilege around 3rd party

implementations.

89

CICD-SEC-8: Ungoverned Usage of 3rd Party Services

● Recommendation
○ Governance controls around 3rd party services should be implemented within

every stage of the 3rd party usage lifecycle.
○ Approval: Establish vetting procedures to ensure granted access to resources

are approved and the level of permission is aligned with least privilege.
○ Integration - Introduce controls and procedures to maintain continuous

visibility over all 3rd parties integrated to CI/CD systems.
○ Visibility over ongoing usage - Ensure each 3rd party is limited and scoped to

the specific resources it requires access to.
○ Deprovisioning - Periodically review all 3rd parties integrated and remove

those no longer in use.

90

CICD-SEC-9

91

Improper Artifact Integrity Validation

CICD-SEC-9: Improper Artifact Integrity Validation

Due to insufficient mechanisms for ensuring the validation of

code and artifacts, allows an attacker with access to one of the

systems in the CI/CD process to push malicious code or artifacts

down the pipeline.

92

CICD-SEC-9: Improper Artifact Integrity Validation

93

Dormouse

Example

CICD-SEC-9: Improper Artifact Integrity Validation

● Impact
○ Adversary with a foothold within the software delivery process to ship a

malicious artifact through the pipeline.

○ Execute malicious code on systems within the CI/CD process or worse -

in production.

94

CICD-SEC-9: Improper Artifact Integrity Validation

● Recommendation
○ Code signing - SCM solutions provide the ability to sign commits using a

unique key for each contributor.
○ Artifact verification software - Prevent unverified software from being

delivered down the pipeline.
○ Configuration drift detection - Measures aimed at detecting

configuration drifts (e.g. resources in cloud environments which aren’t
managed using a signed IAC template), potentially indicative of
resources that were deployed by an untrusted source or process.

95

CICD-SEC-10

96

Insufficient Logging and Visibility

CICD-SEC-10: Insufficient Logging and Visibility

Allow an adversary to carry out malicious activities within the

CI/CD environment without being detected during any phase of

the attack kill chain, including identifying the attacker’s TTPs

(Techniques, Tactics and Procedures) as part of any

post-incident investigation.

97

98

CICD-SEC-10: Insufficient Logging and Visibility

● Impact
○ The existence of all relevant data sources in a centralized location may

be the difference between a successful and devastating outcome in an

incident response scenario.

○ Minimal investigative capabilities.

○ Failing to detect a breach.

○ Facing great difficulties in mitigation/remediation.

99

CICD-SEC-10: Insufficient Logging and Visibility

● Recommendation
○ Mapping the environment - Strong visibility capabilities cannot be achieved

without an intimate level of familiarity with all the different systems involved in
potential threats.

○ Identifying and enabling the appropriate log sources - Ensuring that all
relevant logs are enabled

○ Shipping logs to a centralized location - Support aggregation and correlation
of logs between different systems for detection and investigation.

○ Creating alerts to detect anomalies and potential malicious activity - both in
each system on its own and anomalies in the code shipping process

100

THAT’S IT

101

The CI/CD Goat just got wilder!

102

Gryphon
"That's the reason they're called lessons," the Gryphon remarked: "because they lessen from day to day.”

How long will it take you to crack the Gryphon challenge?

This time, you’ve compromised GitLab! Use your user account to capture flag11. Do you have what it takes?

💡Good to know: you can click the “Explore projects” button to view public projects as well.

103

● What is CI/CD? (redhat.com)

● OWASP Top 10 CI/CD Security Risks | OWASP Foundation

● CI/CD Goat – A deliberately vulnerable CI/CD environment - Cider Security Site

● Malicious code analysis: Abusing SAST | Cider Security

● Shared/Defenders think in lists. Attackers think in graphs. As long as this is true, attackers win

● Bypassing required reviews using GitHub | Cider Security

● Bash Uploader Security Update - Codecov

Reference

104

https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://owasp.org/www-project-top-10-ci-cd-security-risks/
https://www.cidersecurity.io/blog/research/ci-cd-goat/
https://www.cidersecurity.io/blog/research/malicious-code-analysis-abusing-sast-misconfigurations-to-hack-ci-systems/
https://github.com/JohnLaTwC/Shared/blob/master/Defenders%20think%20in%20lists.%20Attackers%20think%20in%20graphs.%20As%20long%20as%20this%20is%20true%2C%20attackers%20win.md
https://www.cidersecurity.io/blog/research/bypassing-required-reviews-using-github-actions/
https://about.codecov.io/security-update/

Q&A

"Seems SAVING the game really is impossible.

...

But...

Maybe, with what little power you have...

You can SAVE something else."

- Undertale -

THANK YOU
Top 10 CI/CD Security Risks

Natworpong Loyswai

FOR ALL YOUR ATTENTION

21st July 2023

