
THE RACE IS ON
UNDERSTANDING AND PREVENTING RACE

CONDITION ATTACKS IN WEB APPS

Profile

Warit Amonthanapinyo (Few)
Penetration Tester,
SnoopBees Co., Ltd.

Punthat Siriwan (Makk)
Penetration Tester,
SnoopBees Co., Ltd.

Agenda

• About Race Condition
• Methodology
• Scenarios

• Race Condition PoC - SNB (Web Apps)
• Real-world

• Prevention
• Atomic Operation
• Locks
• Transaction Isolation Level: Serializable

• Conclusion

Race Condition ..?

Race condition is a vulnerability

that lets more than one

transactions work with the same

data, which leads to anomaly

behavior of the application

a common type of vulnerability closely
related to business logic flaws.

DATA

How it arises

When applications process multiple threads in concurrent without any defenses, this rises a
chance for the vulnerability to occur, resulting in a "collision" that causes unintended behavior
in the application.

Ref: portswigger.net

Sample Scenario

Expressed states

Hidden state

Race window!

it quite hard to attack without technique or tool

- The period of time during which a collision is possible

Single-packet Attack

Burp Suite

1. make a group of requests
2. select “Send Group in parallel (single-packet-attack)” for attacking

Only available after Burp Suite 2023.9

Turbo Intruder: Burp Extension

- HTTP2 single-packet attack
- Python coding

Methodology

1. Predict

No need to test
every endpoint

01
Look for critical or
interesting
functionalities

02
Inspect the
endpoint if it
accesses the
same record

03

- Predict potential collisions

2. Probe - Probe for clues

Benchmark the endpoint to see the normal behaviorBenchmark

Create a baseline for the normal behaviorCreate

Try to send a group of requests in parallel to see the different responsesTry

Look for clues by comparing with the normal responsesLook

3. Prove - Prove the concept

• When we see the difference from the previous step, try to replicate the attack
• Remove unnecessary requests but keep the effect of the exploit

it’s the time for exploiting

Simple Scenarios by us

Tech stack: NextJS, Prisma (ORM), PostgresSQL Db(Read Committed) Deploy on: Vercel

Race Condition PoC - Web app

1. Users - show all users data 2 .Profile - show each user data

3. Transfer - money transferring 4. Book - booking a room

5. Transfer Histories 6. Booking Histories

Let’s begin with
Transfer

- Go to the transfer page

Transfer
(Normal Flow)

- Fill the form to transfer money

Transfer
(Normal Flow)

- Check the user details

result

Transfer
(Normal Flow)

- Check transaction history

result

Initiating Attacks

- Get the request in Burp HTTP
history

- Send the request to the Repeater

Predict

- Get the request in Burp HTTP
history

- Send the request to the Repeater

Predict

- Duplicate the request
- 4-5 requests are OK

Probe (baseline)

- Change the sending method
- Send a group of requests in a
single connection

** Reset all the transactions
before testing **

Observing -1

- Observe the responses
!! There should be only 1
Successful response

result

Observing -2

- The other responses should have
failed due to the balance

result

Observing -3

- Check the balance

Probe -2

- Reset the transaction again
- Change the sending method and
send again

Probe -2

- Observe the responses
!! There should have more than 1
successful responses

4

result

Probe -2

- Observe the responses
!! There should have more than 1
successful responses

5

result

Prove

- Check the user details page
- The summary of every balance
was increased

Default Overall Balance : 400,000

After exploitation: 500,000

… wait a minute +100,000

from where???

result

Vulnerable
code

Transfer 100K from A to B

check A balance

A balance - 100K

B balance + 100K

Create transfer history

END

Transfer 100K from A to B

check A balance

A balance - 100K

B balance + 100K

Create transfer history

END

time

A: 100K, B: 100K

A: 0
B: 100K+100K+100K

A: 0
B: 300K

A: 100K, B: 100K

A: 100K, B: 100K
A: 0, B: 100K
A: 0, B: 100K

Let’s move to
Booking

- Go to the Booking page
- Fill the form and book a room

Booking

- Check the booking history

Important Condition:

Only 1 room can map with 1 user

Predict

- Get the request in Burp HTTP
history

- Send to the Repeater

Probe

- Create a group of requests
- Every user will book the same
room twice

Probe (baseline)

- Create a group of requests
- Every user will book the same
room twice

Observing-1

- Observe the responses
- There should be only 1
successful booking

result

Observing-2

- Other users should see an error
message

result

Observing-3

- Go check the booking history

result

Reset

- Reset the lab
- We will prove for race condition
vulnerability

Probe

- Change the sending method
- Send requests in parallel

Probe

- There should be at least 2
successful responses

- userA

userA

yeahh! I’m the winner

result

Probe

- There should be at least 2
successful responses

- userB

userB

yeahh! I’m the winner too. hmm?

result

Prove

- Check the booking history
- Both of them were

successfully booked a room

result

Prove

- From user’s perspective, both of

them would see a successful

booking

userBuserA
result

Prove

- From user’s perspective, both of

them would see a successful

booking

userB
result

Vulnerable
code

so.. Who is the real winner?

userA

userB

Prove

- From the DB condition,

Only one room is able to
match with only one person.

result

userA

The Impact of successful RC Attack

Transferring
• Financial Loss
• Reputation Damage
• Operational Disruption

Booking
• Financial Loss
• Suffering
• Integrity

"The impact of a successful attack
usually depends on what the
vulnerable function can do."

From the cases given above

Example cases
• Bypassing anti-brute force mechanisms (e.g., login mechanism).

• Overdrawing limits (e.g., bank account).
• Multiple voting (e.g., online surveys).
• Multiple execution of transfers.
• Generation and redemption of coupon or discount codes.

Case study
https://www.pentagrid.ch/en/blog/password-reset-code-brute-force-vulnerability-in-AWS-Cognito/

https://www.pentagrid.ch/en/blog/password-reset-code-brute-force-vulnerability-in-AWS-Cognito/

OpenSSH RegreSSHion Vulnerability
(CVE-2024-6387)

https://blog.qualys.com/vulnerabilities-threat-research/2024/07/01/regresshion-remote-
unauthenticated-code-execution-vulnerability-in-openssh-server

https://blog.qualys.com/vulnerabilities-threat-research/2024/07/01/regresshion-remote-unauthenticated-code-execution-vulnerability-in-openssh-server
https://blog.qualys.com/vulnerabilities-threat-research/2024/07/01/regresshion-remote-unauthenticated-code-execution-vulnerability-in-openssh-server

Prevention

1. Atomic Operation
2. Locks
 - Pessimistic Lock
 - Optimistic Lock
3. Transaction Isolation Level: Serializable

Test cases: Transffering
CASE 1:
A->B 20 times

CASE 2:
A->B, B->C, C->D, D->A 2 times

B

AAA
AA
A

A
A

A

A

A
AA

20 requests

A
A

B

C

D

8 requests (2 cycles)

Test case: Booking
CASE 1:
A->#1, B->#1, C->#1, D->#1 3 times each

AAABBBCCCDDD
ROOM #1

12 requests (3 each)

it’s my room!

it’s mine!

get away!

Transactions

• Atomic: Ensures that either all or none operations of the transactions succeed.
The transaction is either committed successfully or aborted and rolled back.

• Consistent: Ensures that the states of the database before and after the
transaction are valid (i.e. any existing invariants about the data are maintained).

• Isolated: Ensures that concurrently running transactions have the same effect as if
they were running in serial.

• Durability: Ensures that after the transaction succeeded, any writes are being
stored persistently.

Atomic Operation
Associated with low-level
programming with regards to multi-
processing or multi-threading
applications and are similar to Critical
Sections.

Atomic operations by Prisma ensure
that a series of database operations
are executed as a single unit.

If any operation in the series fails, the
entire transaction is rolled back,
leaving the database in its original
state before the transaction began

DATA

1

PreventionVuln

Prove: case1
A->B 20 times

- Go to the transfer page
- Change the sending method

Prove: case1
A->B 20 times

- Intercept the request
- Send to the Repeater

Prove: case1
A->B 20 times
- Create a group of request
- Try to exploit with the same
technique

Prove: case1
A->B 20 times
- Create a group of request
- Try to exploit with the same
technique

Prove: case1
A->B 20 times

1. Only 1 successful response

2. Other responses:
 Error: Insufficient funds

1

2

Prove case 2:
A->B, B->C, C->D, D->A

1. Transfer Successful

2. Error: Insufficient funds

3. Error:
ConnectorError(..PostgresErr
or... “deadlock detected”)

1

2

3

Prove case3:
Bookings

- Go to the book page

- Change the booking method

Prove case3:
Bookings

- Intercept the request
- Send to the Repeater
- Grouping requests

Prove case3:
Bookings

- change value of bookerId for
each request

- Send group in parallel

Prove case3:
Bookings

1. Only 1 Booking Successful

2. Error: Room not available

1

2

.1 Pessimistic Lock
involves locking the data until the
transaction completes, preventing
other transactions from accessing
the locked data until it is
unlocked.

By locking the records,
pessimistic locking ensures that
no other transaction can read or
write the locked data until the
lock is released, thus preventing
race conditions.

DATA

2

PreventionVuln

Prove

- Go to the transfer page
- Change the sending method

Prove: case1
A->B 20 times

1. Only 1 successful response

2. Other responses
 Error: Insufficient funds

1

2

Prove case 2:
A->B, B->C, C->D, D->A

1. Transfer Successful

2. Error: Insufficient funds

3. Error: deadlock detected
(DETAIL: Process XXX waits for
ShareLock on transaction XXXXX
blocked by Process XXY)

1

2

3

Prove case3:
Bookings

1. Only 1 Booking Successful

2. Error: Room not available

1

2

.2 Optimistic Lock
Is a concurrency control
mechanism where each transaction
checks whether the data has been
modified by another transaction
before committing changes. It
typically involves a version number
or timestamp.

Before updating a record, the
application checks the version
number. If the version number has
changed since the record was read,
the transaction is aborted.

DATA

2

PreventionVuln

Prove

- Go to the transfer page
- Change the sending method

Prove: case1
A->B 20 times

1. Only 1 Successful response

2. Other response:

 Error: Insufficient funds

1

2

Prove case 2:
A->B, B->C, C->D, D->A

1. Transfer Successful

2. Error: Failed to update
sender/receiver, transaction
aborted (due to version
detection)

3. Error: Insufficient funds

1

2

3

Prove case3:
Bookings

1. Only 1 Booking Successful

2. Error: Failed to update room,
transaction aborted (due to
version detection)

3. Error: Room not available

1

2

3

Transaction Isolation:
Serializable
Serializable Isolation Level
ensures the highest level of
isolation, making transactions
appear as if they were executed
serially.

This isolation level prevents other
transactions from reading or
writing the data involved in the
transaction until it is completed,
effectively serializing concurrent
transactions.

DATA

3

Isolation Level

• Dirty Read
• Non-repeatable Read

• Phantom Read

• Non-repeatable Read

• Phantom read

Isolation Level

• Phantom Read

Summary : Isolation Level

• READ UNCOMMITTED - read uncomitted data
• READ COMMITTED - read committed data only
• REPEATABLE READ - read the same value until new transaction
• SERIALIZABLE - serial, sequently

leave me alone!

PreventionVuln

Prove

- Go to the transfer page
- Change the sending method

Prove: case1
A->B 20 times

1. Only 1 Successful response

2. Other response:

 Error: Insufficient funds

1

2

Prove case 2:
A->B, B->C, C->D, D->A

1. Transfer Successful

2. Error: Insufficient funds

3. Error: Transaction failed due
to a write conflict or a
deadlock. Please retry your
transaction

1

2

3

Prove case3:
Bookings

1. Only 1 Booking Successful

2. Error: Room not available

3. Error: Transaction failed due
to a write conflict or a
deadlock. Please retry your
transaction

1

2

3

DATA

Atomic Operation by Prisma

Indivisible operations that complete in a single step

Pessimistic Lock

Locks resource before access and keeps it locked until operation completes

Optimistic Lock
Allows simultaneous access and checks for conflicts before committing
changes

Transaction with Serializable Isolation

Executes transactions as if they were serial, ensuring maximum isolation

Su
m

m
ar

y

DATA

Atomic Operation

+ Ensures data integrity, fast and efficient, easy to implement

- Limited to simple operations, not suitable for complex transactions

Pessimistic Lock

+ Ensures data consistency, suitable for high contention, prevents concurrent access

- Can lead to deadlocks, reduced concurrency and performance

Optimistic Lock

+ Higher concurrency, better performance in low contention, reduces deadlocks

- May require retries in high contention, requires conflict detection and handling, complex
implementation

Transaction with Serializable Isolation

+ Maximum data consistency and integrity, prevents all race conditions, suitable for critical transactions

- Significant performance overhead, high contention and blocking, not always supported by databases

Su
m

m
ar

y-
2

DATA

Atomic Operation by Prisma Prisma

is simple and effective for low-contention scenarios. e.g. User Account Updates,
Inventory adjustment

Pessimistic Lock

ensures exclusive access and is ideal for high-contention scenarios but can impact
performance. e.g. Booking Systems, Order Processing

Optimistic Lock

is suitable for high-read, low-write environments where conflicts are rare but need
to be detected. e.g. Collaborative Editing, Online forms

Transaction with Serializable Isolation

is best for applications with stringent data integrity requirements, despite potential
performance impacts. e.g. Financial Systems, Scientific Applications

Su
m

m
ar

y-
3

Conclusion :D

Race Condition on Web Apps
A flaw that produces an unexpected result when the timing of actions impact other actions. An
example may be seen on a multithreaded application where actions are being performed on
the same data.

Methodology: 3P = Predict -> Probe -> Prove

Tool: Burp Suite (Single packet-attack, Turbo Intruder Extension)

Impact : Depends on the vulnerable function.

Prevention: Depends on use cases.

 - Atomic Operation

 - Locks

 - Transaction Isolation Level: Serializable

THE RACE IS OVER
THANK YOU

