Security implications of AOP for
secure software

Bart De Win
DistriNet — KU Leuven
January 23, 2007

OWASP
Belgium
Chapter
Copyright © 2007 - The OWASP Foundation

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License.

The OWASP Foundation

http://www.owasp.org/

Overview

B /ntroduction. using AOP for security
B Problem statement

B Overview of security risks

m Countering the risks

m Conclusion

OWASP AppSec Europe 2006 G 2

Security Is Pervasive

m Application-level security is crosscutting in
location

OWASP AppSec Europe 2006 6 3

Security is Pervasive (ctd.)

m Application-level security is crosscutting in
structure

ecurity : i
. ecurit
Attr1butes AttributZs @

Non-Security
Attributes Attributes

@ Location

v

Non-Security

OWASP AppSec Europe 2006 e 4

AOP to the rescue

m AOP is a novel software engineering paradigm that
supports the modularization of crosscutting concerns
(including security)

B Fundamentals
» Aspect: unit of modularity (cfr. class)
» Advice: unit of behavior (cfr. method)

» Pointcut: specifies points in program where aspects are to be
applied

» Aspects are “woven” into the program
m Multiple studies show that AOP can be used for the
modularized implementation of application-level security

» Improves specialization and manageability
» Facilitates verification of the security solution

©

An example: integrating JAAS using Aspect]

Public aspect AuthAspect{
private Subject _authenticatedSubject;
public pointcut authOperations() = execution(String Account.getBalance());

before(): authOperations(){
if(_authenticatedSubject != null){

return;
}
try{
LoginContext Ic = new LoginContext(“sample”, new TextCallbackHandler());
Ic.login();
_authenticatedSubject = Ic.getSubject();
}

catch(LoginException ex){
System.err.printin(ex);

}
}

OWASP AppSec Europe 2006 Q 6

Integrating JAAS using Aspectj (ctd.)

Object around(): authOperations() && !cflowbelow(authOperations()){
try {
return Subject.doAsPrivileged(_authenticatedSubject,
new PrivilegedExceptionAction(){
public Object run() throws Exception{
return proceed();

}}, null);
}

catch(PrivilegedActionException ex){
System.err.printin(ex);

}
}
}

Source: “Aspect] in Action” by Ramnivas Laddad

OWASP AppSec Europe 2006 Q 7

Overview

m Introduction: using AOP for security
B Problem statement

B Overview of security risks

m Countering the risks

m Conclusion

OWASP AppSec Europe 2006 G 8

Problem statement

B The construction of secure software is difficult
» Idon’t have to convince you, right ? ©

B Software vulnerabilities are to a considerable degree due to the
complexity of:
» Software engineering (pervasiveness)
» Security (algorithms, domain knowledge)

B Aspect-Oriented Programming (AOP) has shown to be helpful
» From a software engineering perspective...

= Increased modularization improves specialization, verification and
manageability

» But what about the security perspective?
= Do we really end up with secure software?

= Statements have been made about this, but little published work is
available

OWASP AppSec Europe 2006 Q o

A motivating example ...

package mypackage; package security;
public class SensitiveData{ aspect Authorization{
private String secret;

private static Policy pol;
public SensitiveData(String s){

secret = s; w pointcut accessrestriction():

} % . execution(String SensitiveData.getSecret());
.
L 4

String getSecret(){ *o o void around(): accessrestriction() {

return secret; * if(! pol.isAllowed(...))
} ’0, throw new RuntimeException("Denied !");

S else proceed();

public static void main(String[] a@s){ }

SensitiveData sd = new SensitiveD }

"My first secret”);
sd.setSecret("My second sec

package unsecure;

System.out.printin(sd.getSecret()); 4, privileged aspect SniffingAspect{
} [* eafter(SensitiveData sd):
} set(private String SensitiveData.secret) && this(sd){
System.out.printin("The secret is now: “ + sd.secret);
}

}

OWASP AppSec Europe 2006 () 10

Overview

m Introduction: using AOP for security
B Problem statement

B Overview of security risks

» Language-level issues
» Tool specific problems
» Synthesis

m Countering the risks
m Conclusion

OWASP AppSec Europe 2006 () 1

Language-level issues

m Invocation parameters can be modified
» Imagine the following aspect ...

aspect PolicyMod{
pointcut polcheck(): execution(boolean Policy.isAllowed(..));

/lconsult the policy, but always return true
boolean around(): polcheck(){

boolean res = proceed();

return true;

}

> Paran*heters presented to a security engine could be modified
as we

B Invocations can be redirected or even discarded entirely:
» Use a less restrictive Policy object
» DoS scenarios

B @precedence in its current form is not a general solution

OWASP AppSec Europe 2006 () 12

Language-level issues (ctd.)

B Access modifiers

» For inter-type declarations: access modifiers for an
aspect’s members/methods are tricky
= Conform to the specifications, but take care !

» Aspects can be declared public and package, but
package is not enforced (bug ?)

OWASP AppSec Europe 2006 () 13

Language-level issues (ctd.)

m Privileged aspects
» Private internals of classes and aspects can be accessed by privileged
aspects
= Log changes of private variables or executions of private methods
= Inspect and modify private, security-related attributes
= Access cflow associations
= Access inter type declarations

» As a result, it becomes very hard to protect security-specific
information

m Remark: only possible using weaving-based AOP tools

» Allows one to “play” with Java’s type safety rules (at least, from a
developer’s perspective)

» Important to realize the impact on security verification (e.g.,
information flow)

OWASP AppSec Europe 2006 () 14

Intermezzo: the dilemma of privileged

B Security aspects often necessitate access to object internals
b Es?eaally true for unanticipated aspects and application-level

olcies
m Cost/benefit analysis of modularization by means of
Invasiveness:
Advantages Drawbacks
Softw. Eng. specialization, maintainability system evolution
Security verification, applicability type safety

B Tension between necessities and desirable properties is an open
problem

=> Until better abstractions become available, it seems appropriate
to continue supporting privileged access, be it in a more secure
manner (see later).

©

Tool specific problems

m Aspect] 5 uses dangerous transformations:

» When usinﬁ privileged aspects to access private members, a
public method with a ‘predictable’ name is introduced in the
target class !

public class SensitiveData{

IImethod generated to access the private secret datamember
public static String ajc$privFieldGet$unsecure_SniffingAspect$mypackage \\
SensitiveData$secret(SensitiveData sensitivedata){
return sensitivedata.secret;
}

<ship>

OWASP AppSec Europe 2006 () 15

Tool specific problems (ctd.)

» Private inter-type declaration members are transformed into
public members in the target class

» Package restricted aspects are transformed into public classes

m Aspect] compiler must control ALL the code in order to
guarantee “‘secure” code

B Access modifiers are checked at compile time. What
about run-time execution?

B Most probably, there will be other issues ...

OWASP AppSec Europe 2006 () 17

Other risks

m Use of wildcards in PCD’s
» Based on syntax instead of semantics
» Difficult to predict the effect in case of system evolution

B Aspect circumvention
» Based on woven code prediction (possibly multi-pass)
» Used to be possible in the past, but seems solved with newer
compiler versions
B Load-time weaving

» Seems like a small step from a softw. eng. perspective, but from
a security point of view it is a different model!
» The unpredictability increases:
= What in case of new classes?
= Can the set of aspects be changed at runtime?

» The use of LTW should be restricted to systems that have
correct compile-time weaving behavior

OWASP AppSec Europe 2006 () 12

Risk synthesis

B Security risks are related to:
» Modification of the logic of a module
» Influencing the interaction or composition of modules
» Enforcement of the aspect model

B This can occur intentionally or unintentionally

» An ignorant developer could introduce security
vulnerabilities without even knowing it

» Addressing these is key

OWASP AppSec Europe 2006 () 15

Risk relevance

B All discussed issues are relevant in a “typical”
development environment

» Software is built and deployed within a single company

» Adversary has no direct impact on code (developers are
trusted)

» Adversary may deliver aspect/class libraries to be inserted
in the product

» Adversary has no direct control over environment (e.g., to
modify bytecode or to activate compiler)

» Adversary could contact the software remotely

OWASP AppSec Europe 2006 () 20

Overview

m Introduction: using AOP for security
B Problem statement
B Overview of security risks

m Countering the risks
» Research results
» Research plans
» Guidelines

m Conclusion

OWASP AppSec Europe 2006 () 21

Towards a solution

B Language extensions/restrictions have been proposed

» [Gudmundson01]: pointcut interface
» [Larochelle03]: explicitly restricting available joinpoints globally
» [Aldrich05]: open modules as a new, more restricted aspect
>

[Sullivan05]: shielding aspect internals by crosscutting
interfaces (XPI's)

m Status
» Most of this is in the research stadium
» Few prototypes are available

m Issues

» Run-time enforcement is key
» Further restrictions might be useful

OWASP AppSec Europe 2006 () 2

Our research plans

B An aspect permission system, which can address
(some of) these problems as well

» Logical extension of Java’s permission system
= Support checking aspects for particular permissions

» Enable control over aspect-specific dynamic actions, such as
cflow or aspect activation

» An effective way of implementing restrictions
= More secure than a compiler-only language solution

B Key issue: represent the identity of an aspect at run-time

OWASP AppSec Europe 2006 () 2

In the mean time: good practices and guidelines

m Use specific PCD’s
B Avoid the use of privileged aspects

m Use aspects that operate at interface level as much as
possible

m Structure aspects in packages

B Avoid using AOP for high-risk components (e.g., attack
surface components, security kernel, ...)

m Avoid using different ‘sets’ of aspects

B When using aspects, make sure to integrate this fully
into the development environment (e.g., all compilation
steps !)

©

Conclusion

m Using AOP for security can be useful, but risky

B Threats originate from
» Language features
» Implementation strategies (and bugs)
and are intentional or unintentional
m AOP could be used for small, controllable, low/medium-
risk projects
» If you know what you're doing

m Mostly Aspect]-specific discussion. What about
JBoss/AOP, Spring AOP, ...?

OWASP AppSec Europe 2006 () 25

Food for discussion

B Benefits/drawbacks of using AOP for security.
What's your experience ?

» Projects
» AOP tools

m Privileged: to be or not to be
B Addressing security issues

OWASP AppSec Europe 2006 () s

