
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

Formal absence of implementation
bugs in web applications:
A case study on indirect data
sharing

Lieven Desmet
DistriNet Research Group
Katholieke Universiteit Leuven
Lieven.Desmet@cs.kuleuven.be
+32 16 32 79 53

BeLux Chapter
May 10th,2007

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

2/49

Overview

<Introduction
<Problem statement
<Static verification of indirect data sharing
<Static and dynamic verification
<Conclusion

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

3/49

Overview

<Introduction
<Problem statement
<Static verification of indirect data sharing
<Static and dynamic verification
<Conclusion

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

4/49

Background

<DistriNet Research group (K.U.Leuven)
4Software engineering group with focus on distributed

software applications
4Large taskforce on software security (+- 25p)

§ Identity management and privacy
§ Security at the language level
§ Security at the application and middleware level
§ Secure software engineering processes

<Try to find a balance between:
4Basic and applied research
4Practical hands-on

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

5/49

Background (2)

<Research on applying formal techniques in (web)
application security
4Concurrency control & deadlock prevention
4Code Access Security
4Buffer overflow protection
4Indirect data sharing
4...

<“We try to improve software security by a.o.
improving the reliability of the software system”

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

6/49

Formal verification in web applications research

<Protection against injection attacks and XSS
4Run-time tainting

–Pietraszek and Vanden Berghe (2005), Nguyen-Tuong et al. (2005), Halder et al.
(2005), ...

4Static analysis
–Livshits and Lam (2005), Jovanovic et al. (2005)

4Combination of static information flow analysis and run-time
guards:

–Huang et al. (2004)

<Firewall configuration analysis
4Consistency between different firewalls and IDS configurations

–Uribe and Cheung (2004)

4Rule consistency and reduction
–Golnabi et al. (2006)

Interesting overview: http://suif.stanford.edu/~livshits/work/griffin/lit-topic.html

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

7/49

Context of this presentation

<Modern software systems:
4Quite complex
4Composed of reusable components

<Common architectural patterns to achieve loose
coupling:
4Pipe-and-filter style
4Data-centered style

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

8/49

Pipe-and-filter style

<The software is composed as a chain of components
(filters), connected to each other by means of pipes

4The invocation chain (control flow) follows the pipe
4The dataflow follows the invocation chain by passing parameters

at each invocation

<To ease the composition, uniform interfaces are often
used

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

9/49

Indirect data sharing

<Data-centered style:
4Central data repository
4Components can read and write data to the repository
4Components share data through the shared data

repository

Shared data
repository

Comp

Comp

Comp

Comp

Comp

Comp

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

10/49

Calendar composition example

/addMeeting AddMeeting
Action

EmailNotifica
tionAction

AddedMeeting
Viewsuccesssuccess

fail
AddMeeting
FailedView

meetingconflicts

Shared data repository
associated with the request

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

11/49

Semantical dependencies

<Breaking these semantical dependencies
typically leads to run-time errors!

/addMeeting AddMeeting
Action

EmailNotifica
tionAction

AddedMeeting
Viewsuccesssuccess

fail
AddMeeting
FailedView

meetingconflicts

Shared data repository
associated with the request

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

12/49

Overview

<Introduction
<Problem statement

§ Duke’s BookStore application
§ Goal and scope of the presented research

<Static verification of indirect data sharing
<Static and dynamic verification
<Conclusion

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

13/49

Duke’s BookStore application

<E-commerce site bundled with the J2EE 1.4
tutorial

<Reactive client/server interaction
/bookstore

Client
Server

protocol

Web Server

/bookdetails

/bookcatalog

/bookcashier

/bookreceipt

/bookshowcart

Server-side
user state

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

14/49

Shared data interactions

<Session repository with 3 data items:
§ messages (ResourceBundle)
§ cart (ShoppingCart)
§ currency (Currency)

§ read
§ def. read/write
§ cond. def. read/write

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

15/49

Identified problems

<BookStoreServlet is not executed first:
§ NullPointerException on retrieval of ‘messages’ data item

<OrderFilter/ReceiptServlet are executed before cart and
currency are stored to the repository

§ NullPointerException on retrieval of ‘cart’ and ‘currency’ data items

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

16/49

Desired composition property

<No broken data dependencies on the shared
repository
4A shared data item is only read after being written on

the shared repository

4For each read interaction, the data item present on
the shared repository is of the type expected by the
read operation

NullPointerException

ClassCastException

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

17/49

Goal and scope of the presented research

<Goal:
§ Eliminate run-time errors by formally guaranteeing the ‘no

broken data dependencies’ property

<Scope:
§ Component-based software with indirect data sharing
§ Deterministic and reactive software compositions

<Important non-functional criteria:
§ Reasonable overhead
§ Applicable to real-life applications

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

18/49

Dependency analysis in GatorMail

<GatorMail
4Open-source webmail application built upon Struts
420K lines of code
465 components

<Analysis results:
465 components reused in 52 request processing flows
41369 hidden interactions with the shared repository
4147 declarative control flow transitions

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

19/49

Complex dependency management

<Composition: /saveAddresses.do

/saveAdresses
SaveAddressesActio

n

SelectAddressesActio
n

/
selectAddresses.js

p
success

MessageAction /message.jsp

FolderAction /folder.jspsuccess

/folder.do?folder=INBOX
inbox

success

folder

fail

fail

MessageAction /message.jsp

FolderAction /folder.jspsuccess

/folder.do?folder=INBOX
inbox

success

folder

success

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

20/49

Complex dependency management

1 of the 52 compositions in GatorMail
107 interactions with the shared repository
10 control flow transitions

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

21/49

Overview

<Introduction
<Problem statement
<Static verification of indirect data sharing

§ Solution overview
§ GatorMail validation experiment

<Static and dynamic verification
<Related work
<Conclusion and future work

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

22/49

Solution

<Our approach uses static verification to
guarantee that the no broken data dependencies
property holds in a given composition

<Verification is based on component contracts
instead component implementations

<2 steps:
4Identify interactions
4Statically verify composition property

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

23/49

Solution overview

Component
implementation

Deployment
information

Component
specification

Checking
specification –
implementation

compliance

Composition-
specific
property

verification

Input artifact

Generated artifact

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

24/49

Component contracts

<Specify the component’s interactions with the
shared repository

<Specify the possible declarative forwards

/ addMeeting AddMeeting
Action

EmailNotifica
tionAction

AddedMeeting
Viewsuccesssuccess

fail AddMeeting
FailedView

meetingconflicts

Shared data repository
associated with the request

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

25/49

AddMeetingAction contract

Automatically translated into Java Modeling Language (JML)

public class AddMeetingAction extends Action {
//@ also
//@ requires request != null;
//@ ensures request.getDataItem("meeting") instanceof Meeting;
//@ ensures \result == "fail" ==> request.getDataItem("conflicts") instanceof Vector;
//@ ensures \result == "success" || \result == "fail";
public String execute(Request request, Form form);

}

//spec: forwards {“success”, “fail”};
//spec: writes {Meeting meeting};
//spec: on forward == “fail” also writes {Vector conflicts};

in order to be verified by existing verification tools

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

26/49

Composition-specific verification

<Main idea:
4Verify if the composition property holds for each

possible execution path in the composition
<Concrete:

4Generate a composition-specific check method,
enrolling the possible run-time execution paths

4Use existing verification tools to verify the
composition property for each execution path

Deployment
information

Component
specification

Composition-
specific
property
verification

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

27/49

Enrolling the execution paths

<Composition example:

/addMeeting AddMeeting
Action

EmailNotifica
tionAction

AddedMeeting
Viewsuccesssuccess

fail AddMeeting
FailedView

meetingconflicts

Shared data repository
associated with the request

AddMeeting

Action

EmailNotifica

tionAction

AddMeeting

View

AddMeeting

FailedView

success

fail

success

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

28/49

Enrolling the execution paths
//@ requires request != null;

public void check_addMeeting(Request request, Form form){
AddMeetingAction addMeetingAction = new AddMeetingAction();
EmailNotificationAction emailNotificationAction = new EmailNotificationAction();
AddedMeetingView addedMeetingView = new AddedMeetingView();
FailedAddedMeetingView failedAddedMeetingView = new FailedAddedMeetingView();

String forward1 = addMeetingAction.execute(request,form);

if(forward1.equals("success")){
String forward2 = emailNotificationAction.execute(request,form);
if(forward2.equals("success")){

addedMeetingView.execute(request,form);
} else { //@ unreachable; }

} else if(forward1.equals("fail")){
failedAddedMeetingView.execute(request,form);

} else { //@ unreachable; }
}

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

29/49

Evaluation

<Prototype implementation:
4Step1:

§ JML as intermediate specification language
§ Our problem-specific contracts are automatically translated into JML
§ ESC/Java2 as static verification tool

4Step 2:
§ Composition-specific verification is automatically generated from the

deployment information
§ ESC/Java2 as static verification tool

<Evaluation on the GatorMail webmail application
<Presented approach was applicable with only some slight

refinements

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

30/49

Experiment results

<JML annotation overhead
4At most 4 lines of problem-specific annotation

<Verification performance:
4Modular verification
4The verification takes up at 700 seconds per

component

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

31/49

Conclusion

<We are able to guarantee the desired
composition properties in a given composition
4With minimal formal specification
4Using existing reasoning tools
4In a reasonable amount of time

<Proposed solution
4Applicable to real-life applications
4Scalable to larger applications (if the complexity of

the individual components remains equivalent)

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

32/49

Overview

<Introduction
<Problem statement
<Static verification of indirect data sharing
<Static and dynamic verification

§ Solution overview
§ Duke’s BookStore validation experiment

<Conclusion

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

33/49

Solution

<Our approach uses static and dynamic
verification to guarantee that the no broken data
dependencies property holds in a given, reactive
composition

<3 steps:
4Identify interactions
4Statically verify composition property
4Enforce underlying assumptions at run time

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

34/49

Solution overview

Application
implementation

Deployment
information

Intended client/
server protocol

Online web
traffic

Application
specification

Checking
specification –
implementation

compliance

Run-time
protocol

enforcement

Application-specific
protocol

verification

Input artifact

Generated artifact

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

35/49

Step 1

Application
implementation

Application
specification

Checking
specification –
implementation

compliance

<Component contracts specify interactions
with the shared repository:

//spec: reads {ResourceBundle messages, Nullable<ShoppingCart>cart,
Nullable<Currency> currency} from session;

//spec: writes {cart == null => ShoppingCart cart} on session;
//spec: possible writes {currency == null => Currency currency} on session;

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

36/49

Step 2

<Simulate all possible client-server interactions that
comply to the intended client/server protocol

<Use static verification to formally guarantee that the no
broken data dependency property is not violated

Deployment
information

Intended client/
server protocol

Application
specification

Application-specific
protocol

verification

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

37/49

Intended client/server protocol

Start

/bookstore

/bookcatalog
/bookcashier

/bookstore
/bookdetails
/bookshowcart

/banner

/bookstore
/bookdetails
/bookshowcart
/bookcatalog
/bookcashier
/banner

orderfilter
/bookreceipt

PROTOCOL := /bookstore + SERVLET A + RECEIPT
RECEIPT := (SERVLET B + SERVLET + /orderfilter + /bookreceipt) | nil
SERVLET := SERVLET A | SERVLET B
SERVLET A := /bookstore | /bookdetails | /bookshowcart | /banner | nil
SERVLET B := /bookcatalog | /bookcashier

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

38/49

Application-specific verification

// …
if (random.nextBoolean()){

switch(random.nextInt()){
case 0: cashier .doGet(request,response); break;
default: catalog.doGet(request,response); break;

}
while(random.nextBoolean()){

switch(random.nextInt()){
case 0: showcart.doGet(request,response); break;
case 1: catalog.doGet(request,response); break;
case 2: cashier .doGet(request,response); break;
case 3: bookstore.doGet(request,response); break;
case 4: bookdetail.doGet(request,response); break;
default: break;

}
}
// …

}

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

39/49

Step 3

<Limit traffic to the intended client/server protocol
<Typical use of a Web Application Firewall (WAF) in

protecting against forceful browsing

Intended client/
server protocol

Online web
traffic

Run-time
protocol

enforcement

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

40/49

Web Application Firewalls

<Protect web applications a.o. against forceful
browsing (cf. WAFEC)

<Typically implementation-agnostic
<No formal guarantee that they protect against

exploits targeting implementation bugs

Network
Firewall

Web
Application

Firewall
Web

Server
Web client
(browser)

Malicious web traffic
Legitimate web traffic

Port 80

Background – Problem statement – Solution – Evaluation - Conclusion

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

41/49

Evaluation

<Prototype implementation:
4Step1:

§ JML as intermediate specification language
§ Our problem-specific contracts are automatically translated into JML
§ ESC/Java2 as static verification tool

4Step 2:
§ Application-specific verification is automatically generated from the

EBNF protocol specification
§ ESC/Java2 as static verification tool

4Step 3:
§ J2EE filter as a proof-of-concept flow enforcement WAF

<Evaluation on the Duke’s BookStore application from the
J2EE 1.4 tutorial

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

42/49

Experiment results

<Annotation overhead:
§ At most 4 lines in our problem-specific annotation

<Verification performance:
§ Static verification took at most 4 minutes per component

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

43/49

Experiment results

<Run-time overhead:
4Experiment:

– sequence of 1000 visitors
– on average 6 requests per session
– 2% of the users applied forceful browsing

4Measured run-time overhead of 1.3%

<In comparison:
4In a previous prototype without static verification, a

run-time overhead of approximately 20% was
measured

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

44/49

Conclusion

<We are able to guarantee the desired composition
properties in a given, reactive composition
4With minimal formal specification
4Using existing reasoning tools
4 In a reasonable amount of time

<Proposed solution
4Applicable to real-life applications
4Scalable to larger applications (if the complexity of the individual

components and the protocol remains equivalent)
<We leverage WAFs to protect application-specific

implementation bugs

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

45/49

Overview

<Introduction
<Problem statement
<Static verification of indirect data sharing
<Static and dynamic verification
<Conclusion

§ Contributions
§ Future work

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

46/49

Contributions

<Contributions:
4We improved the reliability and security of web applications by:

§ Guaranteeing the no broken data dependencies property
§ Applying static verification in deterministic software compositions
§ Combining of static and dynamic verification in reactive software

compositions

<Validations:
§ Validation in both deterministic and reactive software compositions
§ Low annotation cost
§ Reasonable verification time (static & dynamic)
§ Applicable to real-life applications

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

47/49

Future work: short term

<Support concurrent server processing by
adding a fine-grained concurrency model

§ Simple model: introduce lock per user session
§ More fine-grained: maximise parallelism based on disjunct

interactions with the repository

<Enrich the intended client/server protocol by
incorporating input parameters and cookies

§ Formally verify the effectiveness of applied input validation
checks, e.g. in WAFs

OWASP
Lieven Desmet – BeLux Chapter meeting – May 10th, 2007

48/49

Future work: longer term

<Valorise research in a developer’s tool
§ Specification inference !
§ Protocol inference !
§ Useful feedback to the developer
§ Integration into IDE

<Generalise the approach of problem-specific
annotation and verification

§ Application to other composition properties
§ Composability of different properties
§ Compare to alternative approaches, such as pluggable type

systems

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

Formal absence of implementation
bugs in web applications:
A case study on indirect data
sharing

Lieven Desmet
DistriNet Research Group
Katholieke Universiteit Leuven
Lieven.Desmet@cs.kuleuven.be
+32 16 32 79 53

BeLux Chapter
May 10th,2007

Thank you!

