Formal absence of implementation

bugs in web applications:
A case study on indirect data
sharing

Lieven Desmet

DistriNet Research Group
Katholieke Universiteit Leuven
Lieven.Desmet@cs.kuleuven.be

OWASP +32 16 32 79 53

BeLux Chapter
May 10,2007

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

http://www.owasp.or

Overview

m Introduction

B Problem statement

m Static verification of indirect data sharing
m Static and dynamic verification

m Conclusion

OWASP G 2/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Overview

OWASP 6 3/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Background

m DistriNet Research group (K.U.Leuven)

» Software engineering group with focus on distributed
software applications

» Large taskforce on software security (+- 25p)
= Identity management and privacy
= Security at the language level
= Security at the application and middleware level
= Secure software engineering processes

m Try to find a balance between:

» Basic and applied research
» Practical hands-on

OWASP @ 4/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Background (2)

B Research on applying formal techniques in (web)
application security
» Concurrency control & deadlock prevention
» Code Access Security
» Buffer overflow protection

» Indirect data sharing
> ...

m "'We try to improve software security by a.o.
improving the reliability of the software system”

OWASP 9 5/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Formal verification in web applications research

m Protection against injection attacks and XSS

» Run-time tainting

—Pietraszek and Vanden Berghe (2005), Nguyen-Tuong et al. (2005), Halder et al.
(2005), ...

» Static analysis
—Livshits and Lam (2005), Jovanovic et al. (2005)
» Combination of static information flow analysis and run-time

guards:
—Huang et al. (2004)

m Firewall configuration analysis

» Consistency between different firewalls and IDS configurations
—Uribe and Cheung (2004)

» Rule consistency and reduction
—Golnabi et al. (2006)

Interesting overview: http.//suif.stanford.edu/~livshits/work/griffin/lit-topic.html

OWASP 9 6/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Context of this presentation

® Modern software systems:
» Quite complex
» Composed of reusable components

B Common architectural patterns to achieve loose
coupling:
» Pipe-and-filter style
» Data-centered style

OWASP 9 7/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Pipe-and-filter style

B The software is composed as a chain of components
(filters), connected to each other by means of pipes

~
— -
—~ -

» The invocation chain (control flow) follows the pipe

» The dataflow follows the invocation chain by passing parameters
at each invocation

B To ease the composition, uniform interfaces are often
used

OWASP G 8/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Indirect data sharing

m Data-centered style:
» Central data repository
» Components can read and write data to the repository

» Components share data through the shared data
repository

M o>

Shared data
repository

I o
s @ e

oy N
oy

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Calendar composition example

hared data repository
associated with the request

conflicts L _)l meeting —_—
- ~ % =
7 ~ ~N
N \
\ / ~ N
4 - N
Meeti ~N
/addMeeting AddMeeting EmailNotifica) ™ \AddedMeetl
<}L] success _ , sideess
Action tionAction N \ View
N
\

fail

FailedView

AddMeeting]

OWASP e 10/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Semantical dependencies

Shared data repository
associated with the request

conflicts meetin
<——) g F
~ L

-~
~N
> \ \
\ / ~
e\l\ AN
/addMeetin - AN
adaleeting AddMeeting EmailNotifica) AddedMeeting
@) success _ ; | success
Action tionAction View
J J o
. AddMeeting
fail
FailedView

@)

B Breaking these semantical dependencies

typically leads to run-time errors!

OWASP 9 11/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Overview

= Duke’s BookStore application
= Goal and scope of the presented research

OWASP e 12/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Duke’s BookStore application

B E-commerce site bundled with the J2EE 1.4
tutorial

B Reactive client/server interaction

/bookstore

/bookdetails

Server-side
user state

Client
Server

protocol

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Shared data interactions

B Session repository with 3 data items:
= messages (ResourceBundle)
= cart (ShoppingCart)
= currency (Currency)

BookDetailsServlet: CashierServlet:
ResourceBundle messages (read) ResourceBundle messages (read)
Currency currency (cond. def. read/write) ShoppingCart cart (def. read/write)

Currency currency (def. read/write)

BookStoreServlet :

ResourceBundle messages (def. read/write) CatalogServlet:

ResourceBundle messages (read)
ReceiptServlet: ShoppingCart cart (def. read/write)
ResourceBundle messages (read) Currency currency (def. read/write)

ShoppingCart cart (def. read/write)

ShowCartServlet:

OrderFilter: ResourceBundle messages (read)
ShoppingCart cart (read) ShoppingCart cart (def. read/write)
Currency currency (read) Currency currency (cond. def. read /write)

= cond. def. read/write

OWASP G 14/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Identified problems

BookDetailsServlet: CashierServlet:
ResourceBundle messages (read) <= ResourceBundle messages (read) <=
Currency currency (cond. def. read/write) ShoppingCart cart (def. read/write) g

Currency currency (def. read/write)

BookStoreServlet :

ResourceBundle messages (def. read/write) (€= CatalogServlet:

ResourceBundle messages (read) <
ReceiptServlet: ShoppingCart cart (def. read/write) <=
ResourceBundle messages (read) < Currency currency (def. read/write)
ShoppingCart cart (def. read/write) <=

ShowCartServlet:
OrderFilter: ResourceBundle messages (read) €=
ShoppingCart cart (read) - ShoppingCart cart (def. read/write)
Currency currency (read) Currency currency (cond. def. read /write)

B BookStoreServlet is not executed first:
= NullPointerException on retrieval of ‘messages’ data item
B OrderFilter/ReceiptServlet are executed before cart and

currency are stored to the repository
= NullPointerException on retrieval of ‘cart’ and ‘currency’ data items

OWASP e 15/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Desired composition property

B No broken data dependencies on the shared

repository
» A shared data item is only read after being written on

the shared repository N\

NullPoi. ter. xr eption
-

» For each read interaction, the data item present on
the shared repository is of the type expected by the
read operation

<.
ClassC as.-x¢ 2ption
o’

OWASP G 16/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Goal and scope of the presented research

m Goal:

= Eliminate run-time errors by formally guaranteeing the *rno
broken data dependencies’ property

W Scope:
= Component-based software with indirect data sharing
= Deterministic and reactive software compositions

B Important non-functional criteria:
= Reasonable overhead
= Applicable to real-life applications

OWASP 9 17/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

T
Dependency analysis in GatorMail

m GatorMail
» Open-source webmail application built upon Struts
» 20K lines of code
» 65 components

B Analysis results:
» 65 components reused in 52 request processing flows
» 1369 hidden interactions with the shared repository
» 147 declarative control flow transitions

OWASP G 18/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Complex dependency management

m Composition: /saveAddresses.do

SaveAddressesActio
n

/saveAdresses
N

MessageAction success Imessage.jsp

folder

FolderAction success [folder.jsp

fail

[folder.do?folder=INBOX

< inbo

/
selectAddresses.js
p

SelectAddressesActio
n

geAction Jcce! P /message.jsp

folder

FolderAction ——succes Ifolder.jsp

[folder.do?folder=INBOX
< inbo

OWASP 9 19/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Complex dependency management

‘\\

\\\ t_j\”\.\‘?'

..l.b«\.lu Cngry == e Pt gt o cdderiid mndt :“‘ ———pt ' .
'Wﬁ “’.""\%— f1% WA\ TINY ST e W s v #;‘;i

Lieven Desmet — BeLux Chapter meeting — May 10%, 2007 e

Overview

= Solution overview
= GatorMail validation experiment

OWASP 6 21/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Solution

m Our approach uses static verification to
guarantee that the no broken data dependencies
property holds in a given composition

m Verification is based on component contracts
instead component implementations
W 2 steps:

» Identify interactions
» Statically verify composition property

OWASP G 22/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Solution overview

- Input artifact

Generated artifact

Checking
specification —
implementation
compliance

Component —
implementation

Component
specification

Composition-
specific
property

verification

Deployment '
information

OWASP e 23/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Component contracts

m Specify the component’s interactions with the
shared repository

m Specify the possible declarative forwards

hared data repository
associated with the request
'| conflicts |>_<_- p| meeting k< o~ <
=~ ~ ~ ~
~N N

/7 ~ N N
\ < < .
EmailNotifica

o~
,| AddMeeting) _ success »| AddedMeeting
'k Action T~ View

tionAction
N

fail ‘(AddMeetingD

'K FailedView

OWASP 9 24/49

6dMeeting

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

AddMeetingAction contract

//spec: forwards {“success”, “fail”’};
p

//spec: writes {Meeting meeting};

—_— ¢

//spec: on forward == “fail” also writes {Vector conflicts};

Automatically translated into Java Modeling Language (JML)

public class AddMeetingAction extends Action {
/ /@ also
/ /@ requires request |= null;
/ /@ ensures request.getDataltem("meeting") instanceof Meeting;
/ /@ ensures \result == "fail" ==> request.getDataltem("conflicts") instanceof Vectort;
/ /@ ensures \result == "success" | | \result == "fail";

public String execute(Request request, Form form);

;

in order to be verified by existing verification tools OWASP Q 25/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Composition-specific verification -_.\._,

Component
specification

Composition-
Deployment — specific
information property —
. . verification
H Main idea:

» Verify if the composition property holds for each
possible execution path in the composition

m Concrete:

» Generate a composition-specific check method,
enrolling the possible run-time execution paths

» Use existing verification tools to verify the
composition property for each execution path

OWASP G 26/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Enrolling the execution paths

H Com pOS|t|On €Xam hared data repository

associated with the request

» conflicts |~ _ _ — » meeting =

/

/addMeeting AddMeeting
Action

AddedMeetma
SUCCGSSA:l
View

fail ‘(AddMeeting]

'& FailedView

SUCCeESS success

SP 9 27/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Enrolling the execution paths -_>\._.

;

/ /@ requires request = null;

public void check_addMeeting(Request request, Form form){

AddMeetingAction addMeetingAction = new AddMeetingAction();
EmailNotificationAction emailNotificationAction = new EmailNotificationAction();
AddedMeetingView addedMeetingView = new AddedMeetingView();
FailedAddedMeetingView failed AddedMeetingView = new FailledAddedMeetingView();

String forward1 = addMeetingAction.execute(request,form);
if(forwardl.equals("success")){
String forward2 = emailNotificationAction.execute(request,form);
if(forward2.equals("success")){
addedMeetingView.execute(request,form);
} else { //@ unreachable; }
} else if(forwardl.equals("fail")) {
failed AddedMeetingView.execute(request,form);
} else { //@ unreachable; }

Lieven Desmet — BeLux Chapter meeting — May 10, 2007
I

Evaluation

B Prototype implementation:
» Stepl:
= JML as intermediate specification language
= QOur problem-specific contracts are automatically translated into JML

» ESC/Java2 as static verification tool
» Step 2:

= Composition-specific verification is automatically generated from the
deployment information

» ESC/Java2 as static verification tool
m Evaluation on the GatorMail webmail application

B Presented approach was applicable with only some slight
refinements

OWASP 9 29/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Experiment results

m JML annotation overhead
» At most 4 lines of problem-specific annotation

m Verification performance:
» Modular verification

» The verification takes up at 700 seconds per
component

OWASP G 30/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Conclusion

B We are able to guarantee the desired
composition properties in a given composition
» With minimal formal specification
» Using existing reasoning tools
» In a reasonable amount of time

m Proposed solution
» Applicable to real-life applications

» Scalable to larger applications (if the complexity of
the individual components remains equivalent)

OWASP G 31/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Overview

= Solution overview
= Duke’s BookStore validation experiment

OWASP 6 32/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Solution

m Our approach uses static and dynamic
verification to guarantee that the no broken aata
dependencies property holds in a given, reactive
composition

m 3 steps:

» Identify interactions
» Statically verify composition property
» Enforce underlying assumptions at run time

OWASP 9 33/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Solution overview

Application
implementation \

- Input artifact

Generated artifact

Checking
Application specification — '
specification implementation

compliance

\

Deployment —
information

Intended client/ /
server protocol \

Online web ﬁ
traffic

Application-specific
protocol
verification

Run-time
protocol
enforcement

OWASP G 34/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Step 1

Application
implementation \

Application
specification

m Component contrac

Checking
specification —
implementation
compliance

s specify interactions

with the shared repository:

//spec: writes {cart ==

//spec: reads {ResourceBundle messages, Nullable<ShoppingCart>cart,

null => ShoppingCart cart} on session;
//spec: possible writes {currency ==

Nullable<Currency> currency} from session;

null => Currency currency} on session;

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

OWASP e 35/49

Step 2

Application
specification

~—~

Deployment —
information

/

Intended client/
server protocol

B Simulate all possible client-server interactions that
comply to the intended client/server protocol

m Use static verification to formally guarantee that the no
broken data dependency property is not violated

Application-specific
protocol
verification

OWASP ﬁ 36/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Intended client/server protocol

/\ /bookcatalpg orderfilter
/bookcashier .
/bookstore /bookreceipt
/pookstore
bookstore ookdetails
/bookdetails /bookshowcart
/bookshowcart /bookcatalog
/banner /bookcashier
/banner

PROTOCOL. := /bookstore + SERVLET A + RECEIPT

RECEIPT := (SERVLET B + SERVLET + /ortdetfilter + /bookreceipt) | nil
SERVLET := SERVLET A | SERVLET B

SERVLET A := /bookstore | /bookdetails | /bookshowcart | /banner | nil
SERVLET B := /bookcatalog | /bookcashier

OWASP ﬁ 37/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Application-specific verification

/] ...

if (random.nextBoolean()){
switch(random.nextInt()){
case 0: cashier .doGet(request,response); break;
default: catalog.doGet(request,response); break;
h
while(random.nextBoolean()){
switch(random.nextInt()){
case 0: showcart.doGet(request,response); break;
case 1: catalog.doGet(request,response); break;
case 2: cashier .doGet(request,response); break;
case 3: bookstore.doGet(request,response); break;

case 4: bookdetail. doGet(request,response); break;
default: break;

OWASP e 38/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Step 3

Intended client/
server protocol

Online Web —
traffic

Run-time
protocol
enforcement

B Limit traffic to the intended client/server protocol

m Typical use of a Web Application Firewall (WAF) in
protecting against forceful browsing

OWASP e 39/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

<
Web Application Firewalls 7

----- Malicious web traffic

—|_egitimate web traffic -
m—g@p— v

: Web |
Web client Network Appllc?atlon Web
(browser) Firewall Firewall Server

m Protect web applications a.o. against forceful
browsing (cf. WAFEC)

m Typically implementation-agnostic

m No formal guarantee that they protect against
exploits targeting implementation bugs

OWASP e 40/49

Lieven Desmet — BeLux Chaptes mgeting ~Mayd Q42007 ~

Evaluation

B Prototype implementation:
» Stepl:
= JML as intermediate specification language
= QOur problem-specific contracts are automatically translated into JML

» ESC/Java2 as static verification tool
» Step 2:

= Application-specific verification is automatically generated from the
EBNF protocol specification

» ESC/Java2 as static verification tool
» Step 3:

= J2EE filter as a proof-of-concept flow enforcement WAF

m Evaluation on the Duke’s BookStore application from the
J2EE 1.4 tutorial

OWASP 9 41/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Experiment results

m Annotation overhead:
= At most 4 lines in our problem-specific annotation

m Verification performance:
= Static verification took at most 4 minutes per component

OWASP Q 42/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Experiment results

B Run-time overhead:

» Experiment:
— sequence of 1000 visitors
— on average 6 requests per session
— 2% of the users applied forceful browsing

» Measured run-time overhead of 1.3%

B In comparison:

» In a previous prototype without static verification, a
run-time overhead of approximately 20% was
measured

OWASP 9 43/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Conclusion

m We are able to guarantee the desired composition
properties in a given, reactive composition
» With minimal formal specification
» Using existing reasoning tools
» In a reasonable amount of time

m Proposed solution
» Applicable to real-life applications

» Scalable to larger applications (if the complexity of the individual
components and the protocol remains equivalent)

B We leverage WAFs to protect application-specific
implementation bugs

OWASP 9 44/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Overview

= Contributions
= Future work

OWASP ﬁ 45/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Contributions

m Contributions:

» We improved the reliability and security of web applications by:
= Guaranteeing the no broken data dependencies property
= Applying static verification in deterministic software compositions

= Combining of static and dynamic verification in reactive software
compositions

m Validations:
= Validation in both deterministic and reactive software compositions
= Low annotation cost
= Reasonable verification time (static & dynamic)
= Applicable to real-life applications

OWASP 9 46/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Future work: short term

B Support concurrent server processing by

adding a fine-grained concurrency model

= Simple model: introduce lock per user session

= More fine-grained: maximise parallelism based on disjunct
interactions with the repository

m Enrich the intended client/server protocol by

incorporating input parameters and cookies

= Formally verify the effectiveness of applied input validation
checks, e.g. in WAFs

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Future work: longer term

W Valorise research in a developer’s tool
= Specification inference !
= Protocol inference !
= Useful feedback to the developer
» Integration into IDE

B Generalise the approach of problem-specific

annotation and verification
= Application to other composition properties
= Composability of different properties

= Compare to alternative approaches, such as pluggable type
systems

OWASP 9 48/49

Lieven Desmet — BeLux Chapter meeting — May 10, 2007

Formal absence of implementation

bugs in web applications:
A case study on indirect data
sharing

Lieven Desmet

DistriNet Research Group
Katholieke Universiteit Leuven
Lieven.Desmet@cs.kuleuven.be

OWASP +32 16 32 79 53

BeLux Chapter
May 10t,2007

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

http://www.owasp.or

