
Copyright© 2008 KRvW Associates, LLC

Secure Development
Processes

SecAppDev 2008



Copyright© 2008 KRvW Associates, LLC

What’s the problem?
 Writing secure software

is tough
 Newcomers often are

overwhelmed
– Fear of making mistakes

can hinder
 Tend to delve into

security superficially
– Pen testing
– Purchase a source code

analyzer

 Business needs
software dev to be
– Predictable
– Repeatable
– Reliable

 This can drive the
need for a solid
process
– Consistently applied



Copyright© 2008 KRvW Associates, LLC

Consider a Secure SDLC
 Several to choose from
 Enough good in each to

consider all
– Look carefully at each

author’s perspective
 Apply consistently and

measure



Copyright© 2008 KRvW Associates, LLC

Who are the players?
 Microsoft

– Secure Development Lifecycle
– “The Security Development Lifecycle,” Michael Howard and

Steve Lipner, Microsoft Press, ISBN 978-0-7356-2214-2
 Cigital

– “Touchpoint” process
– “Software Security: Building Security In,” Gary McGraw,

Addison-Wesley, ISBN 0-321-35670-5
– http://BuildSecurityIn.US-CERT.gov

 OWASP
– Comprehensive Lightweight Application Security Process

(CLASP)
– http://www.owasp.org/index.php/OWASP_CLASP_Project



Copyright© 2008 KRvW Associates, LLC

MS-SDL Overview

 Consists of 12 stages
– Stage 0: Education and awareness
– Stage 1: Project inception
– Stage 2: Define and follow design best practices
– Stage 3: Product risk assessment
– Stage 4: Risk analysis
– Stage 5: Creating security documents, tools, and best

practices for customers
– Stage 6: Secure coding policies



Copyright© 2008 KRvW Associates, LLC

MS-SDL Overview, cont’d

– Stage 7: Secure testing policies
– Stage 8: The security push
– Stage 9: The final security review
– Stage 10: Security response planning
– Stage 11: Product release
– Stage 12: Security response execution



Copyright© 2008 KRvW Associates, LLC

Stage 0: Education and
Awareness
 Good stuff, make sure your developers

understand what needs to be done and why
 Knowledge management should include

– Attacks and how to prevent, detect, respond
– Language pitfalls
– Secure design patterns
– How to apply the SDLC

 Developers should get annual training
– Novice through expert



Copyright© 2008 KRvW Associates, LLC

Stage 1: Project Inception

 Decide on each of the following:
– Should app be written to SDL?
– Security advisor
– Security leadership team

 Roles, responsibilities, expectations
– Bug tracking process
– “Bug bar”



Copyright© 2008 KRvW Associates, LLC

Stage 2: Design Best Practices

 Define and follow, based on
– Secure design principles

 Think Saltzer and Schroeder
– Attack surface analysis and reduction



Copyright© 2008 KRvW Associates, LLC

Stage 3: Product Risk
Assessment
 Analyze the product’s functions and their

“danger” levels
– Use their sample questionnaire as a starting

point
 Determine the privacy impact
 How much effort should be applied?



Copyright© 2008 KRvW Associates, LLC

Stage 4: Risk Analysis
 This one really comes down to

– Threat modeling
– Using threat model to aid code review
– Using threat model to aid testing
– Determine key success factors and metrics

 Guided by
– STRIDE (Spoofing, Tampering, Repudiation, Info

disclosure, DoS, Elevation)
– DREAD (Damage, Reproducibility, Exploitability,

Affected Users, Discoverability)



Copyright© 2008 KRvW Associates, LLC

Stage 5: Customer focus

 Creating security documents, tools, and
best practices for customers
– Help your customers run your application

securely
– Security features, settings, file access controls,

etc.



Copyright© 2008 KRvW Associates, LLC

Stage 6: Secure Coding
Policies
 Ensure each of the following

– Use latest compiler, library, and features
– Do source code analysis (with tools)
– Avoid banned functions (and don’t re-invent

them)
– Avoid exploitable constructs or designs
– Follow a secure coding checklist



Copyright© 2008 KRvW Associates, LLC

Stage 7: Secure Testing
Policies
 Basically, get (way) beyond the

penetration test
– Fuzzing
– Penetration testing
– Run-time verification
– Update threat models
– Update attack surface



Copyright© 2008 KRvW Associates, LLC

Stage 8: The Security Push

 Basically, a concerted effort to ensure
everything was done right, just before
launch
– Check and double check everything



Copyright© 2008 KRvW Associates, LLC

Stage 9: Final Security Review

 Fundamentally, answer whether the
product is ready to ship
– Validate unfixed bugs (and why)
– Verify we did all that other stuff
– Team sign-off



Copyright© 2008 KRvW Associates, LLC

Stage 10: Security Response
Planning
 What do we do when things go wrong?

– Specifically, the dev team
– Plan for it
– Designate the team
– Ensure facilities are available



Copyright© 2008 KRvW Associates, LLC

Stage 11: Product Release

 Does it dump core? Ship it!
 Final coordination of product security

issues
– Product support staff ready?
– Update server functional?



Copyright© 2008 KRvW Associates, LLC

Stage 12: Security Response
Execution
 Follow the plan

– Don’t (kernel) panic
 Iterate as necessary
 Capture lessons learned
 Feedback loop to product dev team



Copyright© 2008 KRvW Associates, LLC

Cigital’s “Touchpoints”

 Built by McGraw et
al over time
– Perspective is

consulting services
 Consists of three

pillars
– Risk management
– Knowledge
– Touchpoints



Copyright© 2008 KRvW Associates, LLC

Artifact-driven

 Touchpoints represent process-agnostic
reviews that can be done on each dev
artifact
– Enables the security effort to adapt to any

SDLC methodology
 Guiding principle is to not change dev

process, but to deeply integrate with it



Copyright© 2008 KRvW Associates, LLC

The Touchpoints



Copyright© 2008 KRvW Associates, LLC

Touchpoint 1: Code review
 Code review is a necessary evil
 Better coding practices make the

job easier
 Automated tools help catch silly

errors
– Fortify/dev (Cigital rules)

 Implementation errors do
matter
– Buffer overflows can be

uncovered with static
analysis

– Fortify SCA
 Over 500 C/C++ rules
 Over 100 Java rules

 Tracing back from vulnerable
location to input is critical
– Software exploits
– Attacking code



Copyright© 2008 KRvW Associates, LLC

Touchpoint 2: Architectural risk
analysis
 Build a one page white board

design model
 Use hypothesis testing to

categorize risks
– Threat modeling/Attack patterns

 Rank risks
 Tie to business context
 Suggest fixes
 Repeat



Copyright© 2008 KRvW Associates, LLC

Touchpoint 3: Penetration testing
 A very good idea since software is bound in

an environment
 How does the complete system work in

practice?
– Interaction with network security mechanisms
– Firewalls
– Applied cryptography

 Penetration testing should be driven by risks
uncovered throughout the lifecycle

 Not a silver bullet!



Copyright© 2008 KRvW Associates, LLC

Touchpoint 4: Security testing
 Test security functionality

– Cover non-functional requirements
– Security software probing

 Risk-based testing
– Use architectural risk analysis results to drive scenario-based

testing
– Concentrate on what “you can’t do”
– Think like an attacker
– Informed red teaming



Copyright© 2008 KRvW Associates, LLC

Touchpoint 5: Abuse cases
 Use cases formalize normative behavior (and assume correct

usage)
 Describing non-normative behavior is a good idea

– Prepare for abnormal behavior (attack)
– Misuse or abuse cases do this
– Uncover exceptional cases

 Leverage the fact that designers know more about their
system than potential attackers do

 Document explicitly what the software will do in the face of
illegitimate use

 Think like an attacker!



Copyright© 2008 KRvW Associates, LLC

Touchpoint 6: Security
requirements
 Some security

functionality maps
naturally to clear
requirements
– Medical data should

be cryptographically
protected

– Strongly authenticate
users

– Meet GLBA
regulatory guidelines

 But do not forget that
security is an emergent
property of a complete
system
– An attacker needs to find

only one hole
– “Do not allow buffer

overflows” is not much of
a requirement!

– “Make it secure” is vague



Copyright© 2008 KRvW Associates, LLC

Touchpoint 7: Security
operations
 Use your resources!
 Network security people know an awful

lot about real attacks
 Involve knowledgeable security people

in as many touchpoint activities as
possible

 Fine tune the deployed environment to
the specific needs of your application
– “Standard OS build” process is not enough



Copyright© 2008 KRvW Associates, LLC

OWASP’s CLASP

 Built on seven best practices
– Institute awareness programs
– Perform application assessments
– Capture security requirements
– Implement secure dev processes
– Build vulnerability remediation procedures
– Define and monitor metrics
– Publish operational security guidelines



Copyright© 2008 KRvW Associates, LLC

OWASP’s CLASP

 Built on seven best practices
– Institute awareness programs
– Perform application assessments
– Capture security requirements
– Implement secure dev processes
– Build vulnerability remediation procedures
– Define and monitor metrics
– Publish operational security guidelines



Copyright© 2008 KRvW Associates, LLC

Documentation

 CLASP is open source and available for
download:
– http://www.list.org/~chandra/clasp/OWASP-

CLASP.zip



Copyright© 2008 KRvW Associates, LLC

The Good

 Microsoft
– Roles and

responsibilities
– Planning for incidents
– Customer tips
– Positive practices
– Testing

 Cigital
– Review-based
– Depth of ARA
– Code reviews

 OWASP
– Free and open
– Security requirements
– Metrics



Copyright© 2008 KRvW Associates, LLC

The Not-So-Good

 Microsoft
– Pretty heavy
– Designed for MS

 Cigital
– Review-centric
– Light on positive

practices

 OWASP
– Lots of details yet to

be finished



Copyright© 2008 KRvW Associates, LLC

Considerations in Choosing

 One size does NOT
fit all

 Cultural issues
– Dev org size
– How “process heavy”

are you now?
– Across entire

organization



Copyright© 2008 KRvW Associates, LLC

Plan Your Own Hybrid

 Look at each process
 Which components

are likely to work
best for you?
– Feasibility is vital
– Sometimes best isn’t

better
 Think things through

carefully



Copyright© 2008 KRvW Associates, LLC

Plan of Action

 What is in place
now?

 Target process
 Gap analysis
 Chart a course

– Small steps
– Defect data helps to

prioritize steps
 Buy-in is essential



Copyright© 2008 KRvW Associates, LLC

Other Considerations
 Designate a lead

– Be available to answer
questions

 Document your process
 Provide clear guidelines

on how to implement
 Some developers

“allergic” to process

 Allow for feedback
– Adapt as necessary

 Publish results
– Tips and pitfalls
– Case studies

 Applying consistently is
important

 None of this will happen
by itself



Copyright© 2008 KRvW Associates, LLC

Kenneth R. van Wyk
KRvW Associates, LLC

Ken@KRvW.com
http://www.KRvW.com


