Secure Development
Processes

SecAppDev 2008

Copyright© 2008 KRvW Associates, LLC

What's the problem?

Writing secure software e Business needs

is tough software dew.to be
Newcomers often are IR ot ob]

overwhelmed
— Fear of making mistakes — Repeatable
can hinder — Reliable

Tend to delve into e This can drive the
security superficially need for a solid

— Pen testing process
— Purchase a source code

analyzer — Consistently applied

Copyright© 2008 KRvW Associates, LLC

Consider a Secure SDLC

e Several to choose from
e Enough good in each to
consider all

— Look carefully at each
author’s perspective

e Apply consistently and
measure

Copyright© 2008 KRvW Associates, LLC

Who are the players?

e Microsoft
— Secure Development Lifecycle

— “The Security Development Lifecycle,” Michael Howard and
Steve Lipner, Microsoft Press, ISBN 978-0-7356-2214-2

e C(igital
— “Touchpoint” process

— “Software Security: Building Security In,” Gary McGraw,
Addison-Wesley, ISBN 0-321-35670-5

e OWASP

— Comprehensive Lightweight Application Security Process
(CLASP)

Copyright© 2008 KRvW Associates, LLC

MS-SDL Overview

e Consists of 12 stages
— Stage 0: Education and awareness
— Stage 1: Project inception
— Stage 2: Define and follow design best practices
— Stage 3: Product risk assessment
— Stage 4: Risk analysis

— Stage 5: Creating security documents, tools, and best
practices for customers

— Stage 6: Secure coding policies

Copyright© 2008 KRvW Associates, LLC

MS-SDL Overview, cont’'d

— Stage 7: Secure testing policies

— Stage 8: The security push

— Stage 9: The final security review

— Stage 10: Security response planning
— Stage 11: Product release

— Stage 12: Security response execution

Copyright© 2008 KRvW Associates, LLC

Stage 0: Education and
Awareness

e Good stuff, make sure your developers
understand what needs to be done and why

e Knowledge management should include
— Attacks and how to prevent, detect, respond

— Language pitfalls

— Secure design patterns
— How to apply the SDLC

e Developers should get annual training
— Novice through expert

Copyright© 2008 KRvW Associates, LLC

Stage 1: Project Inception

e Decide on each of the following:
— Should app be written to SDL?
— Security advisor

— Security leadership team

e Roles, responsibilities, expectations
— Bug tracking process
— “Bug bar”

Copyright© 2008 KRvW Associates, LLC

Stage 2: Design Best Practices

e Define and follow, based on

— Secure design principles
e Think Saltzer and Schroeder

— Attack surface analysis and reduction

Copyright© 2008 KRvW Associates, LLC

Stage 3: Product Risk
Assessment

e Analyze the product’s functions.and their
“danger” levels

— Use their sample questionnaire as a starting
point

e Determine the privacy impact

e How much effort should be applied?

Copyright© 2008 KRvW Associates, LLC

Stage 4: Risk Analysis

e This one really comes down to
— Threat modeling
— Using threat model to aid code review
— Using threat model to aid testing
— Determine key success factors and metrics

e Guided by

— STRIDE (Spoofing, Tampering, Repudiation, Info
disclosure, DoS, Elevation)

— DREAD (Damage, Reproducibility, Exploitability,
Affected Users, Discoverability)

Copyright© 2008 KRvW Associates, LLC

Stage 5: Customer focus

e Creating security documents, tools, and
best practices for customers

— Help your customers run your application
securely

— Security features, settings, file access controls,
etc.

Copyright© 2008 KRvW Associates, LLC

Stage 6: Secure Coding
Policies

e Ensure each of the following

— Use latest compiler, library, and features
— Do source code analysis (with tools)

— Avoid banned functions (and don’t re-invent
them)

— Avoid exploitable constructs or designs
— Follow a secure coding checklist

Copyright© 2008 KRvW Associates, LLC

Stage 7: Secure Testing
Policies

e Basically, get (way) beyond the
penetration test

Fuzzing

Penetration testing

Run-time verification
— Update threat models
— Update attack surface

Copyright© 2008 KRvW Associates, LLC

Stage 8: The Security Push

e Basically, a concerted effort to ensure
everything was done right, just before
launch

— Check and double check everything

Copyright© 2008 KRvW Associates, LLC

Stage 9: Final Security Review

e Fundamentally, answer whether the
product 1s ready to ship

— Validate unfixed bugs (and why)
— Verify we did all that other stuff
— Team sign-off

Copyright© 2008 KRvW Associates, LLC

Stage 10: Security Response
Planning

e What do we do when things go wrong?

— Specifically, the dev team
— Plan for 1t
— Designate the team

— Ensure facilities are available

Copyright© 2008 KRvW Associates, LLC

Stage 11: Product Release

e Does it dump core? Ship 1t!

e Final coordination of product security
1Ssues

— Product support staff ready?
— Update server functional?

Copyright© 2008 KRvW Associates, LLC

Stage 12: Security Response
Execution

e Follow the plan
— Don’t (kernel) panic
e [terate as necessary

e Capture lessons learned

e Feedback loop to product dev team

Copyright© 2008 KRvW Associates, LLC

Cigital’'s "Touchpoints”

e Built by McGraw et
al over time

— Perspective 1s
consulting services

e Consists of three
pillars

— Risk management
— Knowledge

— Touchpoints

Copyright© 2008 KRvW Associates, LLC

Artifact-driven

e Touchpoints represent process-agnostic
reviews that can be done on each dew
artifact

— Enables the security effort to adapt to any.
SDLC methodology

e Guiding principle 1s to not change dev
process, but to deeply integrate with 1t

Copyright© 2008 KRvW Associates, LLC

The Touchpoints

EXTERNAL
REVIEW

SECURITY
REQUIREMENTS

RIsSK
ANALYSIS

/ \

ARCHITECTURE
AND DESIGN

RISK=BASED
SECURITY TESTS

\

ABUSE
CASES

\

REQUIREMENTS
AND USE CASES

Copyright© 2008 KRvW Associates, LLC

CODE REVIEW
(TooLs)

PENETRATION
TESTING

/'

RISK
ANALYSIS

\

TESTS AND
TEST RESULTS

SECURITY
OPERATIONS

/

FEEDBACK FROM
THE FIELD

Touchpoint 1: Code review

Code review is a necessary evil

Better coding practices make the
job easier

Automated tools help catch silly
errors

— Fortify/dev (Cigital rules)

Copyright© 2008 KRvW Associates, LLC

Implementation errors do
matter

— Buffer overflowsSican be
uncovered with stati¢
analysis

Fortify SCA
e Over 500 C/C++ rules
e Over 100 Java rules

Tracing back from vulnerable
location to input is critical

— Software exploits
— Attacking code

Touchpoint 2: Architectural risk

analysis

e Build a one page white board
design model

Use hypothesis testing to
categorize risks

— Threat modeling/Attack patterns
RENGINE
T1e to business context
Suggest fixes
Repeat

alternatives
ints

Requirements plan
\ ife plan

Plan next pha

Copyright© 2008 KRvW Associates, LLC

valuate altern
identify, resolve ris

Develop, verify
next-level product

Source Code
(Any supported
language)

All entities in this box
can provide evidence,
and use permission checks.

\

\

Management

Common Language
Runtime

Source Code Metadata
Compiler Engine

Backend
Compiler

Linker

Profiling

Sel

Compilation
Process

Touchpoint 3: Penetration testing

e A very good idea since software 1s bound 1n
an environment

e How does the complete system work 1n
practice?
— Interaction with network security mechanisms

— Firewalls
— Applied cryptography
e Penetration testing should be driven by risks
uncovered throughout the lifecycle

e Not a silver bullet!

Copyright© 2008 KRvW Associates, LLC

Touchpoint 4: Security testing

e Test security functionality
— Cover non-functional requirements
— Security software probing

e Risk-based testing

— Use architectural risk analysis results to drive scenario-based
testing

— Concentrate on what “you can’t do”
— Think like an attacker
— Informed red teaming

Copyright© 2008 KRvW Associates, LLC

Touchpoint 5: Abuse cases

Use cases formalize normative behavior (and assume correct
usage)
Describing non-normative behavior is a good idea

— Prepare for abnormal behavior (attack)

— Misuse or abuse cases do this

— Uncover exceptional cases

Leverage the fact that designers know more about their
system than potential attackers do

Document explicitly what the software will do in the face of
illegitimate use

Think like an attacker!

Copyright© 2008 KRvW Associates, LLC

Touchpoint 6: Security

requirements

e Some security
functionality maps
naturally to clear
requirements

— Medical data should
be cryptographically
protected

— Strongly authenticate
users

— Meet GLBA
regulatory guidelines

Copyright© 2008 KRvW Associates, LLC

e But do not forget that
security 1s an,emergent
property of a complete
system

— An attacker needs to find
only one hole

“Do not allow buffer
overflows” 1s not much of
a requirement!

“Make it secure” is vague

Touchpoint 7: Security
operations

e Use your resources!

e Network security people know an awful
lot about real attacks

e Involve knowledgeable security people

1n as many touchpoint activities as
possible

e Fine tune the deployed environment to
the specific needs of your application

— “Standard OS build” process is not enough

Copyright© 2008 KRvW Associates, LLC

OWASP's CLASP

e Built on seven best practices
— Institute awareness programs
— Perform application assessments
— Capture security requirements
— Implement secure dev processes
— Build vulnerability remediation procedures
— Define and monitor metrics
— Publish operational security guidelines

Copyright© 2008 KRvW Associates, LLC

OWASP's CLASP

e Built on seven best practices
— Institute awareness programs
— Perform application assessments
— Capture security requirements
— Implement secure dev processes
— Build vulnerability remediation procedures

Copyright© 2008 KRvW Associates, LLC

Documentation

e CLASP 1s open source and available for
download:

Copyright© 2008 KRvW Associates, LLC

The Good

e Microsoft e Cigital

— Roles and — Review-based

responsibilities — Depth of ARA
— Planning for incidents — Code reviews

— Customer tips e OWASP

— Positive practices — Free and open

— lesting — Security requirements

— Metrics

Copyright© 2008 KRvW Associates, LLC

The Not-So-Good

e Microsoft e OWASP
— Pretty heavy — Lots of details yet to
— Designed for MS be finished
e Cigital
— Review-centric
— Light on positive
practices

Copyright© 2008 KRvW Associates, LLC

Considerations in Choosing

® One size does NOT
fit all

e (Cultural 1ssues
— Dev org size

— How ““process heavy”
are you now?

— Across entire
organization

Copyright© 2008 KRvW Associates, LLC

Plan Your Own Hybrid

e [ook at each process

e Which components
are likely to work
best for you?

— Feasibility 1s vital
— Sometimes best 1sn’t
better

e Think things through
carefully

Copyright© 2008 KRvW Associates, LLC

Plan of Action

e What i1s in place
now?

® Target process
e (Gap analysis
e Chart a course

— Small steps

— Defect data helps to
prioritize steps

e Buy-in 1s essential

Copyright© 2008 KRvW Associates, LLC

Other Considerations

Designate a lead Allow for feedback

— Be available to answer — Adapt as necessary

questions Publish results
e Document your process — Tips and pitfalls

e Provide clear guidelines — Case studies

on how to implement Applying consistently 18
Some developers important

“allergic” to process None of this will happen

by itself

Copyright© 2008 KRvW Associates, LLC

Kenneth R. van Wyk
KRvW Associates, LLC

Designing & Implementing Secure Applications

Secure
Coding

Principles & Practices

Copyright© 2008 KRvW Associates, LLC

