Attacking and Defending the Grid

Pulling back the curtains to reveal the front battle lines of Smart Grid security.

Justin Searle – InGuardians
Types of Security Assessments

• Best Practice Assessments / Security Architecture Reviews:
 – Focuses on engineer/admin interviews to evaluate security posture
 – Looks at system implementation and configuration

• Vulnerability Assessment:
 – Focuses on the use of automated tools, often with some degree of manual verification
 – Looks for known system vulnerabilities and mis-configurations through the use of vulnerability signatures and system versioning

• Penetration Testing:
 – Focuses on the arts of system misuse and reverse engineering
 – Utilizes the concept of attack and pivot to identify difficult-to-discover vulnerabilities several layers deep
 – More accurately gauges the risk of known vulnerabilities
 – Requires a higher degree of technical expertise and knowledge
 • Extensive manual efforts
 • Custom tool creation
Smart Grid Conceptual Model

Markets

Bulk Generation

Operations

Transmission

Service Provider

Distribution

Customer

Secure Communication Interface
Electrical Interface
Domain
Smart Grid Reference Model - Domains
Basic Utility Attack Surface

- Client Side Attacks
- Server Side Attacks
- Network Attacks
- Hardware Attacks
Client Side Attacks

• For years, attackers have been leveraging company workstations as a primary attack avenue
 – Perimeters are getting harder to attack directly
 – Employees are more dependent on the Internet
 – Web browsers have excessive functionality that can be used for both good and evil
 – Employees have access to company’s internal systems

• Types of client side attacks:
 – Malware, Viruses, and Botnets
 – Software vulnerabilities via buffer overflows, security boundaries, and software update mechanisms
 – Web browser attacks such as XSS (Cross Side Scripting) to execute malicious code on a user’s browser
Client Side Defenses

• Traditional defenses are of limited use against targeted attacks
 – Antivirus can be bypassed within minutes through binary repacking and modification
 – Bypass web proxy filters by using non-blacklisted sites

• Network segregation and properly implemented access control provide the strongest and most economical defense
 – Limit access to sensitive data and control system functionality
 – Segregate sensitive workstations and servers from other systems

• What does this mean for Utilities?
 – Prevent customer service reps from issuing disconnect/reconnect and demand response signals. Have it go through a ticketing system to a smaller control systems team
 – Deny Internet access to all workstations that issue control signals or interface with control systems, such as control center workstations, AMI administrators, and employees approving disconnect/reconnect and demand response signals
Server Side Attacks

- Client Side Attacks
- Server Side Attacks
- Network Attacks
- Hardware Attacks
Server Side Attacks

• Customer and Employee portals are obvious targets
• Attacks on internal servers from compromised workstations should also be expected
• Pivoting through internal user web browsers to attack internal web applications is far less obvious
 – Most web applications are vulnerable to CSRF (Cross-Site Request Forgery) attacks
 – CSRF attacks are completely transparent to the user and can affect any system they are currently logged into
 – CSRF attacks don’t require compromised workstations
• It is critical to understand web based attacks like CSRF because most of our Smart Grid systems use web based management interfaces
Cross-Site Request Forgery (CSRF)

Attack Prerequisites
- Attacker must have knowledge of the application he is attacking (can be obtained at conferences)
- Attacker must know the hostname or IP address of the CIS system (can be obtained by browser based attacks)

1. Employee using CIS system throughout the day
2. Employee opens a second tab and surfs to the Attacker website (or MySpace page…)
3. Hidden in the page, the Attacker’s website tells the employee’s web browser to disconnect a customer’s power
4. Web browser sends disconnect request to CIS

Customer Information System with Power Disconnect Capabilities
Server Side Defenses

- Keep systems patched and updated
- Perform periodic vulnerability assessments and penetration tests
- Use Intrusion detection and intrusion prevention systems in strategic positions around highly sensitive servers and control management systems
- Utilize centralized logging systems for alerting and forensic evidence
Network Attacks

- Client Side Attacks
- Server Side Attacks
- Network Attacks
- Hardware Attacks
Network Protocols and Security

• Its pointless to compare proprietary protocols to standards based protocols from a security perspective
 – standards based protocols benefit from greater transparency, but suffer from “interoperable” hacker tools
 – proprietary based protocols benefit from obscurity and sparse hacker tools, but suffer from limited security reviews
 – the same arguments can be made for open source vs. proprietary software

• Securely architected protocols is essential, but properly implemented and configured protocols are just as important
Attack: Weak Cryptography

• Many proprietary systems implement their own cryptography
 – Some create their own crypto algorithms
 – Others create their own crypto stacks of known algorithms
 – Just because it's "AES" doesn't mean it's secure

• Exploits in insecure cipher modes, weak nonce construction, IV re-use, etc…

• Practical attacks include replaying data, decrypting packets, key recovery, data manipulation / injection

• Analysis tools to test implementations: Ent, visualization of RNG's, cryptographic accelerators, custom scripts
Histogram Analysis

Packet Payload Histogram for capture1.dump

Packet Payload Histogram for capture4.dump
Insecure Block Cipher Modes

- AES ciphers using CTR mode effectively become a stream cipher
- Without key derivation and rotation, IV collisions compromise integrity of cipher

```
C:\>type ivcoltest.py
#!/usr/bin/env python
knownplain = "\x9a\x9a\x03\x00\x00\x00\x08\x00\x045\x00\x01\x00\x01\x00\x00"
knowncip = "\x31\xb9\x84\x81\xe1\x96\x71\xd8\xa3\x39\x0c\xfb\x48\xae\x61"
unknowncip = "\x31\xb9\x84\x81\xe1\x96\x71\xd8\xa3\x3d\x0c\xfb\xb5\xae\x61"
print "Decrypted packet: ":
for i in range(0,len(knownplain)):
    print "%02x"%( (ord(knownplain[i]) ^ ord(knowncip[i])) ^ ord(unknowncip[i])))
print("\n")
C:\>python ivcoltest.py
Decrypted packet:
aa aa 03 00 00 00 08 00 45 00 05 48 00 fc 00 00
```
Defense: Weak Cryptography

- Design and implementation of cryptographic systems is extremely difficult
 - Avoid this if possible
 - Leverage vetted third-party encryption stack implementations
- If necessary, model system after proven protocols
 - IEEE 802.11i RSN key derivation
- Expert cryptographic review consulting

Vulnerabilities in crypto are especially hard to recover from
(remember WEP?)
Hardware Attacks

- Client Side Attacks
- Server Side Attacks
- Network Attacks
- Hardware Attacks
Hardware Attacks

• All field deployed devices are susceptible to physical hardware attack
 – Meters on residential homes are obvious targets
 – Pole-top devices such as DA and feeder automation devices are not much harder to access (albeit riskier to health)
 – Substation physical defenses are a deterrent, not an insurmountable obstacle

• If tamper mechanisms or perimeter alarms are triggered, modified hardware is not easily detected

• Basic Hardware Attacks:
 – Encryption key and flash extraction
 – Firmware / Software vulnerabilities
 – Flash image manipulation
Attack: Key & Firmware Extraction

• Extract locally stored encryption key and firmware
 – Extract contents of RAM, Flash, and EEPROM data
 – Identify encryption key or firmware
 – Especially useful when a single key is shared across multiple devices

• Intercepting data between circuit board peripherals
 – Operate and boot device normally in a lab, monitoring bus activity between major chips (MCU, Radio, EEPROM, RAM)
 – Identify encryption key or firmware
 • Encryption key can often be found in key load operations between a microcontroller and crypto accelerator
 • Firmware can often be found in software updates between radio and flash
Interfacing with an IC
Lifting an IC’s Chip Enable (CE) Pin
I2C EEPROM Dumping

I2C Control

- Bitrate: 400 kHz
- Slave Addr: 50
- Features: 10-Bit Addr, Combined FMT, No Stop

Master Write

Message:
00 00[...

Slave Busy: Free Bus

SPI Control

- Bitrate: 1000 kHz
- Polarity: Falling/Rising
- Phase: Sample/Setup
- Bit Order: LSB

Master Read

Number of Bytes: 64

Transaction Log

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Module</th>
<th>R/W</th>
<th>M/S</th>
<th>Feature</th>
<th>B.R.</th>
<th>Addr.</th>
<th>Length</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>09-10-30 11:55:18.119</td>
<td>I2C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I2C Pullups Enabled</td>
</tr>
<tr>
<td>09-10-30 11:55:18.145</td>
<td>I2C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I2C Bitrate Set to: 100</td>
</tr>
<tr>
<td>09-10-30 11:55:18.172</td>
<td>I2C</td>
<td>W</td>
<td>M</td>
<td></td>
<td>--S</td>
<td>100</td>
<td>0x50</td>
<td>1</td>
<td>00</td>
</tr>
<tr>
<td>09-10-30 11:55:18.228</td>
<td>I2C</td>
<td>R</td>
<td>M</td>
<td></td>
<td></td>
<td>100</td>
<td>0x50</td>
<td>256</td>
<td>00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E</td>
</tr>
<tr>
<td>09-10-30 11:56:27.917</td>
<td>I2C</td>
<td>W</td>
<td>M</td>
<td></td>
<td></td>
<td>400</td>
<td>0x32</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>09-10-30 11:55:29.966</td>
<td>I2C</td>
<td>R</td>
<td>M</td>
<td></td>
<td></td>
<td>400</td>
<td>0x32</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>09-10-30 11:55:42.149</td>
<td>I2C</td>
<td>W</td>
<td>M</td>
<td></td>
<td></td>
<td>400</td>
<td>0x32</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
SPI Bus Snooping
Symmetric Key Search

- Basic string searches for obvious keys
- Develop custom tools to do more advanced searches:
 - GoodFET: Abuses vulnerability in TI, Ember radios to access RAM even when chip is locked
 - zbgoodfind: Search for ZigBee key using RAM dump as a list of potential keys
 - Combined they can recover the ZigBee network key

```
$ sudo goodfet.cc dumpdata chipcon-2430-mem.hex
Target identifies as CC2430/r04.
Dumping data from e000 to ffff as chipcon-2430-mem.hex.
...
$ objcopy -I ihex -O binary chipcon-2430-mem.hex chipcon-2430-mem.bin
$ zbgoodfind -R encdata.dcf -f chipcon-2430-mem.hex
zbgoodfind: searching the contents of chipcon-2430-mem.hex for encryption keys with the first encrypted packet in encdata.dcf.
Key found after 6397 guesses:  c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf
```
Asymmetric Key Search

- Asymmetric keys have high entropy (very random)
- RAM and Flash is filled with non-random data
- Graphing entropy of flash reveals a spike in randomness
- This spike is the location of the asymmetric key in flash
Defense: Key & Firmware Extraction

• Utilize System-on-a-Chip (SoC) devices when possible
• Hardware tamper-proof mechanism and monitoring
 – Learn from Microsoft, epoxy layers are only a speed bump
• Limit encryption key distribution to small groups of devices, preferably with unique keys per meter
• Obscure encryption key storage
• TPM's can protect asymmetric keys
• Implement key rotation mechanisms

Be prepared to answer: What is my remediation strategy once the encryption keys protecting the NAN are compromised?
Conclusion

• Required skills for assessing Smart Grid security cover many areas
 – Hardware, software, wireless, cryptography and more
• Through efficient testing, we can address vulnerabilities before they threaten deployments
• Publically available AMI Attack Methodology
 – Download it at www.inguardians.com
 – An InGuardians created document funded by the original ASAP (AMI Security Acceleration Project) project
 – Provides a detailed methodology for performing penetration tests on smart meter networks
 – Methodology can be adapted for Feeder automation and Substation networks
Contact Information

Justin Searle
justin@inguardians.com
801-784-2052
www.inguardians.com