
DistriNet

Large-scale evaluation of remote 
JavaScript inclusions

You are what you include:

Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, Giovanni Vigna



DistriNet

Introduction: my USB stick



DistriNet

Introduction: browsers don’t care



DistriNet

Large-scale evaluation of remote 
JavaScript inclusions

You are what you include:

Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, Giovanni Vigna



DistriNet

Outline
JavaScript in a browser

… and motivation for an experiment
Our experiment
Our results

Some unsurprising results
Some weirdness

Countermeasures



DistriNet

JavaScript in the browser



DistriNet

JavaScript in a browser: origins
Origin: http, facebook.com, 80 Origin: http, google-maps.com, 80



DistriNet

JavaScript in a browser: inclusions
Origin: http, facebook.com, 80 Origin: http, google-maps.com, 80



DistriNet

Motivation…

32 days…



DistriNet

Our experiment



DistriNet

Our experiment: questions
Given that remote JS inclusions happen…
… Should sites be trusting remote providers?

Which third-party vendors do they currently trust?
Are JS providers capable of securing their website? What is 
the quality of maintenance profile of each JS provider?

Could a provider be attacked as a way of reaching a harder-to-
get target?

Are there attack vectors, in relation to remote inclusions, 
that we were not aware of ?
How can one protect his web application?

Are coarse-grained sandboxes sufficient?



DistriNet

Our experiment: crawler
Crawler requirements:

Download webpages
Log JavaScript inclusions
Execute JavaScript for dynamic inclusions

HTMLUnit: JS-enabled headless browser 
in Java
Queried Bing for max 500 pages of Alexa
top 10000



DistriNet

Our experiment: some numbers
Crawled over 3,300,000 pages belonging 
to the Alexa top 10,000
Discovered:

8,439,799 remote inclusions
88.45% of Alexa top 10k uses at least 1 

remote JS library
301,968 unique JS files
20,225 uniquely-addressed remote hosts



DistriNet

Results: unsurprisingly…



DistriNet

Results: how many remote hosts?



DistriNet

Results: Popular JavaScript includes



DistriNet

Results: quality of maintenance?
Assumption: Unmaintained websites are easier to attack
QoM indicator comprised of these factors:

Availability: DNS not expired, publicly-routable IP address
Cookies (at least one):
• HttpOnly? 
• Secure?
• Path & Expiration?

Anti-XSS & Anti-Clickjacking headers?
TLS/SSL implementation
• Weak ciphers
• Valid certificates
• Strict Transport Protocol

Cache control when using TLS/SSL?
Outdated web servers?



DistriNet

Results: QoM in color!



DistriNet

Results: like attracts like



DistriNet

Results: weirdness!



DistriNet

Results: weirdness?
In about 8.5 million records of remote 
inclusions, is there something that we 
didn’t know?
4 Things! J

Cross-user & Cross-network Scripting
Stale domain-based inclusions
Stale IP-based inclusions
Typo-squatting Cross-Site Scripting



DistriNet

Weirdness: Cross-user Scripting
<script src=http://localhost/script.js>

133 records were found

131 specified a port (localhost:12345), 

always greater than 1024

Attack:

• Setup a web-server, listen to high ports, hack 

other users

http://localhost/script.js


DistriNet

Weirdness: Cross-network Scripting

<script src=http://192.168.2.3/script.js>
68 of them
Same as before, but now you just need to 

be in the same local network

Who is doing that?
akamai.com
virginmobileusa.com
gc.ca (Government of Canada)

http://192.168.2.3/script.js


DistriNet

Weirdness: Stale IP-based remote 
inclusions

What if the IP address of the host which you 
trust for JavaScript, changes?

The including page’s scripts must also change
Do they?

Manual analysis of the 299 pages
39 addresses had:
a) Not changed
b) no longer provided JavaScript

a) In 89.74%, we got a “Connection Timeout”



DistriNet

Weirdness: Stale domain-based 
inclusions

What happens when you trust a remote site 
and the domain of that site expires?

Anyone can register it, and start serving 
malicious JS
Equal in power to the, almost extinct, stored 
XSS
• Try proving in court that someone hacked you with 

that
56 domains found, used in 47 sites

6 were identified as special cases (TXSS)

Scared yet?



DistriNet

Weirdness: Typo-squatting XSS (TXSS)

Unfortunately… developers are humans
<script src=http://googlesyndicatio.com/...>

Typo-squatting
registering domains that are mistypes of 

popular domains
Serve ads, phishing, drive-by downloads 

etc. to users that mistype the domain

http://googlesyndicatio.com/...


DistriNet

Weirdness: TXSS examples found…

Googlesyndicatio.com (15 days)

Unique visitors 163,188

Including domains 1185

Including pages 21,830



DistriNet

Countermeasures



DistriNet

Countermeasures
Problems with remote inclusions

Never the visitor’s fault
A developer can mess up 
• Cross-user, cross-network and TXSS

The remote host can mess up
• Low security, expiration of domain names

How to protect one’s self?
i. Sandbox remote scripts
ii. Download them locally



DistriNet

Countermeasures: sandboxing
Is it feasible?
What are the current requirements of 
legitimate scripts?
Study the top 100

Automatically study each script
• JavaScript wrappers + stack trace

Find out what sensitive resources they access
• Cookies, Storage, Geolocation, Eval, 

document.write
Is containment possible?



DistriNet

… sandboxing: Access to resources

Coarse-grained sandboxing is useless here,
legitimate scripts and attackers act the same way L



DistriNet

Countermeasures: local copies
Study the frequency of script modifications

Discover overhead for administrator
Top 1,000 most-included scripts (803)

Download every script three consecutive times and 
remove the ones that changed all three times
Study the rest for a week

10.21% were modified
6.97% were modified once
1.86% were modified twice
1.83% were modified three or more

89.79% was never modified!
96.76% at most once



DistriNet

Conclusions



DistriNet

Conclusions
Remote inclusions mean, almost unconditional, trust

Think twice before including something from a remote host

Do NOT:
Include from 127.0.0.1 or private networks
Include from IP addresses
Include from stale domains
Include from typodomains
Include from questionable JS providers

Do:
Make local copies
Sandbox 3rd party JS if it is feasible
Have hope: sleep sound tonight



DistriNet
Questions?

Thank you!


