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Android apps are an attractive target
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Google play has over 775K apps and over 48B total
installs [IDC, Google 1/0 keynote]

5' Google play APP INSTALLS
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App security is not guaranteed by the platform
provider

< Apps that are well intended, but not exploit free

A single vulnerability could affect a massive number
of users

Not yet much explored
2 Focused on Mozilla Firefox / RHEL
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Code inspection

< Manual verification is not feasible
< Not all apps can afford security experts

< Even security experts cannot analyze every line of code
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Code inspection

< Manual verification is not feasible
< Not all apps can afford security experts
< Even security experts cannot analyze every line of code

Penetration testing / security testing
Static code analysis

Magic

< Vulnerability prediction models
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Machine learning
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Predict vulnerable Java files in Android apps!

Predict vulnerable C++ components in Chrome/
Firefox

< ongoing

Predict vulnerable PHP files

< summer work
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Existing tools and techniques

< Vulnerability prediction models

Our approach

Results

Conclusions and future research
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Start from a hunch = feature

< e.g., larger components are more likely to be vulnerable
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Start from a hunch = feature

< e.g., larger components are more likely to be vulnerable

Fetch the features from the components

< e.g., calculate the size for each component

Determine the vulnerabilities
< e.g., National Vulnerability Database, MFSA

Investigate the correlation

2 Use machine learning techniques
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Typical “hunches”

=

Use size and complexity metrics

Leverage developer activity metrics

Leverage code churn metrics

Leverage design churn metrics

Number of import statements
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Typical “hunches”
< Use size and complexity metrics
Leverage developer activity metrics
Leverage code churn metrics
Leverage design churn metrics

Number of import statements

Inspired on the defect prediction work

< Vulnerabilities are actually defects, but much more scarce
(“needle in a haystack”)
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The existing models are fairly complex

< Typically several versions are necessary to collect all
metrics

< Developer activity metrics are required
< Code evolution metrics are required

Biased to the underlying “hunch” of the researcher
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Existing tools and techniques

< Static code analysis
< Vulnerability prediction using metrics

Our approach

Results

Conclusions and future research
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Use the source code itself in a tokenized form

Use the token frequency as features
< Simplicity

< No explicit assumptions regarding the code characteristics
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Transform each source code token into a feature

vector

< each token (“monogram?”) is a feature

< tokenize by delimiters, mathematical and logical
operations

b= ]=+-""/ afes

each feature has a count assigned to it
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package com. fsck.k9;

import android.text.util.Rfc822Tokenizer;

import android.widget.AutoCompleteTextView.Validator;
public class EmailAddressValidator implements Validator

{

public CharSequence fixText(CharSequence invalidText)

{
}
public boolean isValid(CharSequence text)

{
}

return "";

return Rfc822Tokenizer.tokenize(text).length > 0;

1

Monday 10 June 13 week



package com. fsck.k9;

import android.text.util.Rfc822Tokenizer;

import android.widget.AutoCompleteTextView.Validator;
public class EmailAddressValidator implements Validator

{

public CharSequence fixText(CharSequence invalidText)

{
}
public boolean isValid(CharSequence text)

{
}

return "";

return Rfc822Tokenizer.tokenize(text).length > 0;

1

package: 1

Monday 10 June 13 week



package com. fsck.k9;

import android.text.util.Rfc822Tokenizer;

import android.widget.AutoCompleteTextView.Validator;
public class EmailAddressValidator implements Validator

{

public CharSequence fixText(CharSequence invalidText)

{
}
public boolean isValid(CharSequence text)

{
}

return "";

return Rfc822Tokenizer.tokenize(text).length > 0;

1

package: 1, com: 1
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package com. fsck.k9;

import android.text.util.Rfc822Tokenizer;

import android.widget.AutoCompleteTextView.Validator;
public class EmailAddressValidator implements Validator

{
public CharSequence fixText(CharSequence invalidText)
{
return "";
}
public boolean isValid(CharSequence text)
{
return Rfc822Tokenizer.tokenize(text).length > 0;
}

package: 1, com: 1, fsck: 1, k9: 1, import: 2, android: 2, text: 2, util: 1, Rfc822Tokenizer: 2,
widget: 1, AutoCompleteTextView:1, Validator: 2, public: 3, class: 1, EmailAddressValidator: 1,
implements: 1, CharSequence: 2, fixText: 1, invalidText: 1, return: 2, tokenize: 1, length: 1

Vulnerability Prediction in Android Apps
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Assign vulnerability to each Java file

< use Fortify (static code analyzer) for this task

< each file is either vulnerable or clean
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Vulnerability assignment
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Assign vulnerability to each Java file

use Fortify (static code analyzer) for this task

Source code
(Java files)

each file is either vulnerable or clean

package: 1, com: 1, fsck: 1, k9: 1, import: 2, android: 2, text: 2, util: 1, Rfc822Tokenizer: 2,
widget: 1, AutoCompleteTextView:1, Validator: 2, public: 3, class: 1, EmailAddressValidator: 1,
implements: 1, CharSequence: 2, fixText: 1, invalidText: 1, return: 2, tokenize: 1, length: 1

Vulnerability Prediction in Android Apps
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Vulnerability assignment

package: 1, com: 1, fsck: 1, k9: 1, import: 2, android: 2, text: 2, util: 1, Rfc822Tokenizer: 2,

. Feature
Tokenizer [—P> Vectors ’, ______ >

Machine
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Static code —»| oo Fi------
analyzer

use Fortify (static code analyzer) for this task

Source code
(Java files)

each file is either vulnerable or clean
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™

widget: 1, AutoCompleteTextView:1, Validator: 2, public: 3, class: 1, EmailAddressValidator: 1,

implements: 1, CharSequence: 2, fixText: 1, invalidText: 1, return: 2, tokenize: 1, length: 1,

vulnerability: O

Vulnerability Prediction in Android Apps
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Leverage machine learning techniques to build a
prediction model

< Training set -> the data used to train the model
< Testing set -> the data used to validate the model

Various techniques available (SVM, Naive Bayes,
Random Forest, CART, kNN)
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Can we predict future versions of an app based on
its first version?
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Can we predict future versions of an app based on
its first version?

< Training set - the first version (v0) of an app
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Can we predict future versions of an app based on
its first version?

< Training set - the first version (v0) of an app

< Testing set - all subsequent versions of that app
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Can we predict future versions of an app based on
its first version?

< Training set - the first version (v0) of an app
< Testing set - all subsequent versions of that app
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< Repeat for all apps

Monday 10 June 13 week



Monday 10 June 13 week



Can we build a generalized predictor that works on
all apps?

< Training set - the first version (v0) of an app

< Testing set - first versions of all other apps
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Application Category Downloads Versions
AnkiDroid education 100k - 500k 8
BoardGameGeek  books 10k - 50k 8
Connectbot communication 1M -5M 12
CoolReader books 1M - 5M 13
Crosswords brain & puzzle 5k - 10k 17
FBReader books 1M - 5M 14
K9 Mail communication 1M -5M 19
KeePassAndroid  tools 100k - 500k 13
MileageTracker finance 100k - 500k 6
Mustard social 10k - 50k 12

< F-droid repository: 01/01/2010->31/12/2011

< Selection criteria: open-source, size, number of versions

Vulnerability Prediction in Android Apps 21
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Existing tools and techniques

< Static code analysis
< Vulnerability prediction using metrics

Our approach

Results

Conclusions and future research
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Accuracy: percentage of correctly classified files
2 imagine 90% of the files are clean

2 saying all files are clean will achieve 90% accuracy
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Accuracy: percentage of correctly classified files
2 imagine 90% of the files are clean
2 saying all files are clean will achieve 90% accuracy

Prediction vs. reality .
< True positive (TP) .

True negative (TN)

=
2 False positive (FP)
=)

False negative (FN)
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Accuracy: percentage of correctly classified files
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imagine 90% of the files are clean
saying all files are clean will achieve 90% accuracy

Prediction vs. reality
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Accuracy: percentage of correctly classified files
2 imagine 90% of the files are clean
2 saying all files are clean will achieve 90% accuracy

Prediction vs. reality
< True positive (TP)
2 True negative (TN)
2 False positive (FP)
2 False negative (FN)

Precision: P = TP/(TP+FP)

. Vulnerability Prediction in Android Apps - N, 25
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Accuracy: percentage of correctly classified files
2 imagine 90% of the files are clean
2 saying all files are clean will achieve 90% accuracy

Prediction vs. reality
< True positive (TP)
True negative (TN)

=
2 False positive (FP)
=)

False negative (FN)

Precision: P = TP/(TP+FP)
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Accuracy: percentage of correctly classified files
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imagine 90% of the files are clean
saying all files are clean will achieve 90% accuracy

Prediction vs. reality
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=
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True positive (TP)

True negative (TN)
False positive (FP)
False negative (FN)

Precision: P = TP/(TP+FP)

Recall: R = TP/ (TP+FN)

Monday 10 June 13 week
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Accuracy: percentage of correctly classified files
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imagine 90% of the files are clean
saying all files are clean will achieve 90% accuracy

Prediction vs. reality
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True positive (TP)

True negative (TN)
False positive (FP)
False negative (FN)

Precision: P = TP/(TP+FP)

Recall: R = TP/ (TP+FN)
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K9Mail (Random Forest)
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When do we need to build a
new model?

< Retrain when performance
indicators drop with 10%
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Experiment 1: future predictions

Retrain when performance
indicators drop with 10%

DistriNet

Application Retrain (months)
AnkiDroid =
BoardGameGeek 9
ConnectBot =
CoolReader 10
Crosswords 2
FBReader -~
K9Mail 12
KeePassAndroid -~
MileageTracker 1
Mustard =

Vulnerability Prediction in Android Apps

-- no retraining is required
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Most influential features
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Most influential features
> e, Exception, try, catch (error handling)
if (branching)
null (pointer algebra)
java, org (import statements)
new, Log (others)

Produced by InfoGain
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Use of Fortify tool for vulnerability extraction

=

Some research results have shown that there are strong
correlations between static analysis metrics and the
quality of reported vulnerabilities

Manual validation seems to confirm our findings (work in
progress)!

We are currently validating the same technique on
Mozilla Firefox and the results are slightly better than
the existing work
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We have presented a novel technique for predicting
vulnerable Java files in Android applications

< The obtained results are very promising

We are working in parallel on 2 additional tracks

< Vulnerability prediction for Firefox/Chrome in C++

< Vulnerability prediction for PHP
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We are looking to validate our technique further

If you have data you are willing to share with us, we
would be glad to collaborate
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