Vulnerability Prediction in
Android Apps

Aram Hovsepyan!, Riccardo Scandariato’,
James Walden? Viet Hung Nguyen?

i ' q‘ Wouter Joosen’

1 IMinds-DistriNet, Katholieke Universiteit Leuven
2 Northern Kentucky University, 3 University of Trento

Monday 10 June 13 week

Android apps are an attractive target

1

00%

Worldwide Smartphone OS Share, 2012 Q1 - 2013 Q1

. Android i0S . Windows Phone BlackBerry OS

Linux . Symbian . Others

2012 Q2 2012 Q4 2013

Vulnerability Prediction in Android Apps

1
Ll

(WDAS

&

™

DistriNet

Monday 10 June 13 week

Google play has over 775K apps and over 48B total
installs [IDC, Google 1/0 keynote]

5' Google play APP INSTALLS

250N

Monday 10 June 13 week

App security is not guaranteed by the platform
provider

< Apps that are well intended, but not exploit free

A single vulnerability could affect a massive number
of users

Not yet much explored
2 Focused on Mozilla Firefox / RHEL

Monday 10 June 13 week

Monday 10 June 13 week

Code inspection

< Manual verification is not feasible
< Not all apps can afford security experts

< Even security experts cannot analyze every line of code

Monday 10 June 13 week

Code inspection
< Manual verification is not feasible
< Not all apps can afford security experts
< Even security experts cannot analyze every line of code

Penetration testing / security testing

Monday 10 June 13 week

Code inspection

< Manual verification is not feasible
< Not all apps can afford security experts
< Even security experts cannot analyze every line of code

Penetration testing / security testing

Static code analysis

Monday 10 June 13 week

Code inspection

< Manual verification is not feasible
< Not all apps can afford security experts
< Even security experts cannot analyze every line of code

Penetration testing / security testing
Static code analysis

Magic

< Vulnerability prediction models

Monday 10 June 13 week

Monday 10 June 13 week

Source
code

Monday 10 June 13 week

. I B AN A
sl S I o

A

Source
code

\1°4

Vulnerability Prediction in Android Apps 6

Monday 10 June 13 week

. I B AN A
sl S I o

A

Source
code

\1°4

Machine learning

Vulnerability Prediction in Android Apps 6

Monday 10 June 13 week

Predict vulnerable Java files in Android apps!

Predict vulnerable C++ components in Chrome/
Firefox

< ongoing

Predict vulnerable PHP files

< summer work

Monday 10 June 13 week

Existing tools and techniques

< Vulnerability prediction models

Our approach

Results

Conclusions and future research

Monday 10 June 13 week

Monday 10 June 13 week

DN \ A | . \ N &\ >
SRR % S | €A @ NSNS

Vulnerability Prediction in Android Apps 9

Monday 10 June 13 week

Monday 10 June 13 week

Start from a hunch = feature

< e.g., larger components are more likely to be vulnerable

Monday 10 June 13 week

Start from a hunch = feature

< e.g., larger components are more likely to be vulnerable

Fetch the features from the components

2 e.g., calculate the size for each component

Monday 10 June 13 week

Start from a hunch = feature

< e.g., larger components are more likely to be vulnerable

Fetch the features from the components

< e.g., calculate the size for each component

Determine the vulnerabilities
< e.g., National Vulnerability Database, MFSA

Monday 10 June 13 week

Start from a hunch = feature

< e.g., larger components are more likely to be vulnerable

Fetch the features from the components

< e.g., calculate the size for each component

Determine the vulnerabilities
< e.g., National Vulnerability Database, MFSA

Investigate the correlation

2 Use machine learning techniques

Monday 10 June 13 week

Monday 10 June 13 week

Typical “hunches”

=

Use size and complexity metrics

Leverage developer activity metrics

Leverage code churn metrics

Leverage design churn metrics

Number of import statements

Monday 10 June 13 week

Typical “hunches”
< Use size and complexity metrics
Leverage developer activity metrics
Leverage code churn metrics
Leverage design churn metrics

Number of import statements

Inspired on the defect prediction work

< Vulnerabilities are actually defects, but much more scarce
(“needle in a haystack”)

Monday 10 June 13 week

The existing models are fairly complex

< Typically several versions are necessary to collect all
metrics

< Developer activity metrics are required
< Code evolution metrics are required

Biased to the underlying “hunch” of the researcher

Monday 10 June 13 week

Existing tools and techniques

< Static code analysis
< Vulnerability prediction using metrics

Our approach

Results

Conclusions and future research

Monday 10 June 13 week

Use the source code itself in a tokenized form

Use the token frequency as features
< Simplicity

< No explicit assumptions regarding the code characteristics

Monday 10 June 13 week

-
-

-
w

JSRDas ’sia%a
%Qymg‘ﬂﬁ*

Our approach

“/

/ \
Tokeni DN Feature |
okenizer Vectors
Source code |[) \ Y Machine
Java files .
() / N Learning
N Fortify Vulnoral
. uinera
Staticcode —¥»{ i [
analyzer
\ /

Vulnerability Prediction in Android Apps

Monday 10 June 13 week

DistriNet

Feature

Tokenizer vectors

AN

Source f:ode N Machine
(Java files) Learning

- Fortify
Static code
analyzer

Vulnerab
ilities

Monday 10 June 13 week

Source code |}

(Java files)

Tokenizer

Fortify
Static code
analyzer

Monday 10 June 13 week

Feature | |
vectors

Learning

Vulnerab
ilities

I . Feature
Tokenizer Vectors

k\
Source f:ode h Machine
(Java files) Learning

Fortlfy VuIn rab
Static code —» .|.t.25

analyzer

Transform each source code token into a feature

vector

< each token (“monogram?”) is a feature

< tokenize by delimiters, mathematical and logical
operations

b=]=+-""/ afes

each feature has a count assigned to it

Monday 10 June 13 week

Monday 10 June 13 week

package com. fsck.k9;

import android.text.util.Rfc822Tokenizer;

import android.widget.AutoCompleteTextView.Validator;
public class EmailAddressValidator implements Validator

{

public CharSequence fixText(CharSequence invalidText)

{
}
public boolean isValid(CharSequence text)

{
}

return "";

return Rfc822Tokenizer.tokenize(text).length > 0;

1

Monday 10 June 13 week

package com. fsck.k9;

import android.text.util.Rfc822Tokenizer;

import android.widget.AutoCompleteTextView.Validator;
public class EmailAddressValidator implements Validator

{

public CharSequence fixText(CharSequence invalidText)

{
}
public boolean isValid(CharSequence text)

{
}

return "";

return Rfc822Tokenizer.tokenize(text).length > 0;

1

package: 1

Monday 10 June 13 week

package com. fsck.k9;

import android.text.util.Rfc822Tokenizer;

import android.widget.AutoCompleteTextView.Validator;
public class EmailAddressValidator implements Validator

{

public CharSequence fixText(CharSequence invalidText)

{
}
public boolean isValid(CharSequence text)

{
}

return "";

return Rfc822Tokenizer.tokenize(text).length > 0;

1

package: 1, com: 1

Monday 10 June 13 week

DistriNet

(WDAS

&

Feature vector

package com. fsck.k9;

import android.text.util.Rfc822Tokenizer;

import android.widget.AutoCompleteTextView.Validator;
public class EmailAddressValidator implements Validator

{
public CharSequence fixText(CharSequence invalidText)
{
return "";
}
public boolean isValid(CharSequence text)
{
return Rfc822Tokenizer.tokenize(text).length > 0;
}

package: 1, com: 1, fsck: 1, k9: 1, import: 2, android: 2, text: 2, util: 1, Rfc822Tokenizer: 2,
widget: 1, AutoCompleteTextView:1, Validator: 2, public: 3, class: 1, EmailAddressValidator: 1,
implements: 1, CharSequence: 2, fixText: 1, invalidText: 1, return: 2, tokenize: 1, length: 1

Vulnerability Prediction in Android Apps

Monday 10 June 13 week

AN

Source code |}

(Java files)

Tokenizer

Fortify
Static code
analyzer

Monday 10 June 13 week

Feature
vectors

Machine
Learning

Vulnerab
ilities

N R of o @
o »

QranliiitTvV ASQ1C

Feature

Tokenizer vectors

k\
Source code |} Machine
(Java files) "1 Learning

Fortify =
- Vulnerab
Static code ilites [
analyzer

/

Monday 10 June 13 week

AN ‘ AR RN o o o
AN NN S w S« ELL AWAE F ol ' | = ¥ =
1NAraniIIIrv Aacqeionr

. Feature
Tokenizer vectors
L\
Source code |} Machine
(Java files) > "1 Learning
Il

\. Fortify
- Vulnerab
Static code ilites [

analyzer

Assign vulnerability to each Java file

< use Fortify (static code analyzer) for this task

< each file is either vulnerable or clean

Monday 10 June 13 week

JIODES]

Vulnerability assignment

. Feature
Tokenizer [—P> Vectors ’, ______ >

Machine
" Learning

\ Fortify Vet
Static code —»| oo Fi------
analyzer

Assign vulnerability to each Java file

use Fortify (static code analyzer) for this task

Source code
(Java files)

each file is either vulnerable or clean

package: 1, com: 1, fsck: 1, k9: 1, import: 2, android: 2, text: 2, util: 1, Rfc822Tokenizer: 2,
widget: 1, AutoCompleteTextView:1, Validator: 2, public: 3, class: 1, EmailAddressValidator: 1,
implements: 1, CharSequence: 2, fixText: 1, invalidText: 1, return: 2, tokenize: 1, length: 1

Vulnerability Prediction in Android Apps

Monday 10 June 13 week

+*
>

=

>

DistriNet

Vulnerability assignment

package: 1, com: 1, fsck: 1, k9: 1, import: 2, android: 2, text: 2, util: 1, Rfc822Tokenizer: 2,

. Feature
Tokenizer [—P> Vectors ’, ______ >

Machine
" Learning

Fortify Vet
Static code —»| oo Fi------
analyzer

use Fortify (static code analyzer) for this task

Source code
(Java files)

each file is either vulnerable or clean

LGODAS!
™

widget: 1, AutoCompleteTextView:1, Validator: 2, public: 3, class: 1, EmailAddressValidator: 1,

implements: 1, CharSequence: 2, fixText: 1, invalidText: 1, return: 2, tokenize: 1, length: 1,

vulnerability: O

Vulnerability Prediction in Android Apps

DistriNet

Monday 10 June 13 week

AN

Source code |}

(Java files)

Tokenizer

Fortify
Static code
analyzer

Monday 10 June 13 week

Feature
vectors

Machine
Learning

Vulnerab
ilities

AN

Source code |}

(Java files)

Tokenizer

Feature
vectors

Fortify
Static code
analyzer

Machine
Learning

Monday 10 June 13 week

Vulnerab
ilities

Feature

Tokenizer vectors

AN

Source code |} Aachine

(Java files) i Learning

Fortify
Static code
analyzer

Vulnerab
ilities

Leverage machine learning techniques to build a
prediction model

< Training set -> the data used to train the model
< Testing set -> the data used to validate the model

Various techniques available (SVM, Naive Bayes,
Random Forest, CART, kNN)

Monday 10 June 13 week

Monday 10 June 13 week

Can we predict future versions of an app based on
its first version?

Monday 10 June 13 week

Can we predict future versions of an app based on
its first version?

< Training set - the first version (v0) of an app

Monday 10 June 13 week

Can we predict future versions of an app based on
its first version?

< Training set - the first version (v0) of an app

< Testing set - all subsequent versions of that app

Monday 10 June 13 week

Can we predict future versions of an app based on
its first version?

< Training set - the first version (v0) of an app

< Testing set - all subsequent versions of that app

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I

" VY O O H IV DH DNV OO0 0N 9 AN DO N
<:Q <:'\, <:°) N) QQ N Q7 N QA <,:® QN Q" O O ' O N O

Monday 10 June 13 week

Can we predict future versions of an app based on
its first version?

< Training set - the first version (v0) of an app

< Testing set - all subsequent versions of that app

P

T R P PN DN ED P H>D LD PO D
N QN DY AW AL DD S o D

Monday 10 June 13 week

Can we predict future versions of an app based on
its first version?

< Training set - the first version (v0) of an app
< Testing set - all subsequent versions of that app

P

T O O HP IV H DV O 0 L 9 O A8 D QO N
<:‘\, <:°) N) qQ N QT N O ,,"\, <:°) QN Q" O O ' O N O

< Repeat for all apps

Monday 10 June 13 week

Monday 10 June 13 week

Can we build a generalized predictor that works on
all apps?

< Training set - the first version (v0) of an app

< Testing set - first versions of all other apps

Monday 10 June 13 week

Application Category Downloads Versions
AnkiDroid education 100k - 500k 8
BoardGameGeek books 10k - 50k 8
Connectbot communication 1M -5M 12
CoolReader books 1M - 5M 13
Crosswords brain & puzzle 5k - 10k 17
FBReader books 1M - 5M 14
K9 Mail communication 1M -5M 19
KeePassAndroid tools 100k - 500k 13
MileageTracker finance 100k - 500k 6
Mustard social 10k - 50k 12

< F-droid repository: 01/01/2010->31/12/2011

< Selection criteria: open-source, size, number of versions

Vulnerability Prediction in Android Apps 21

Monday 10 June 13 week

00009 0000€ 0000+ O

¢ Mustard

=
=
(2]
X
>

CoolReader

2 AnkiDroid

® KeePassAndroid
#* MileageTracker

Crosswords
FBReader

BoardGameGeek
ConnectBot

Monday 10 June 13 week

-
<
o
i
=
=
7
O
a

——

—

——

-

—

_370;'@

v —v—

==

@ =9 ‘i’&a*::$ — @ ———¢

o

L

a
V=g—v—g—y

-~

w » _E‘ o o o i - T

v T
O —#

0

v—-% Vv
\

¢ Mustard

v K9Mail

CoolReader

2 AnkiDroid

® KeePassAndroid
#* MileageTracker

Crosswords
FBReader

BoardGameGeek
ConnectBot

Monday 10 June 13 week

Existing tools and techniques

< Static code analysis
< Vulnerability prediction using metrics

Our approach

Results

Conclusions and future research

Monday 10 June 13 week

Monday 10 June 13 week

Accuracy: percentage of correctly classified files
2 imagine 90% of the files are clean

2 saying all files are clean will achieve 90% accuracy

Monday 10 June 13 week

Accuracy: percentage of correctly classified files
2 imagine 90% of the files are clean

2 saying all files are clean will achieve 90% accuracy

Monday 10 June 13 week

" Yamecf oQ TN r S { =8

Accuracy: percentage of correctly classified files
2 imagine 90% of the files are clean

2 saying all files are clean will achieve 90% accuracy

Monday 10 June 13 week

FEYYAN) D 1NN C :

Accuracy: percentage of correctly classified files
2 imagine 90% of the files are clean
2 saying all files are clean will achieve 90% accuracy

Prediction vs. reality .
< True positive (TP) .

True negative (TN)

=
2 False positive (FP)
=)

False negative (FN)

Monday 10 June 13 week

Accuracy: percentage of correctly classified files

—
=)

imagine 90% of the files are clean
saying all files are clean will achieve 90% accuracy

Prediction vs. reality

=)

=
=
=)

Monday 10 June 13 week

True positive (TP)

True negative (TN)
False positive (FP)
False negative (FN)

Vulne;a_bi,'

=2 F 1) 100

Accuracy: percentage of correctly classified files
2 imagine 90% of the files are clean
2 saying all files are clean will achieve 90% accuracy

Prediction vs. reality
< True positive (TP)
2 True negative (TN)
2 False positive (FP)
2 False negative (FN)

Precision: P = TP/(TP+FP)

. Vulnerability Prediction in Android Apps - N, 25

Monday 10 June 13 week

Accuracy: percentage of correctly classified files
2 imagine 90% of the files are clean
2 saying all files are clean will achieve 90% accuracy

Prediction vs. reality
< True positive (TP)
True negative (TN)

=
2 False positive (FP)
=)

False negative (FN)

Precision: P = TP/(TP+FP)

Vulneﬁrabif. T,l,,,, 10 l,_,! ANAIro id ADD

Monday 10 June 13 week

Accuracy: percentage of correctly classified files

—
=)

imagine 90% of the files are clean
saying all files are clean will achieve 90% accuracy

Prediction vs. reality

=)

=
=
=)

True positive (TP)

True negative (TN)
False positive (FP)
False negative (FN)

Precision: P = TP/(TP+FP)

Recall: R = TP/ (TP+FN)

Monday 10 June 13 week

Vulne;a_bi,'

Accuracy: percentage of correctly classified files

—
=)

imagine 90% of the files are clean
saying all files are clean will achieve 90% accuracy

Prediction vs. reality

=)

=
=
=)

True positive (TP)

True negative (TN)
False positive (FP)
False negative (FN)

Precision: P = TP/(TP+FP)

Recall: R = TP/ (TP+FN)

Monday 10 June 13 week

Vulne;a_bi,'

Monday 10 June 13 week

e B

K9Mail (Random Forest)

Monday 10 June 13 week

=0=Precision
<=Recall

Monday 10 June 13 week

When do we need to build a
new model?

< Retrain when performance
indicators drop with 10%

Monday 10 June 13 week

Experiment 1: future predictions

Retrain when performance
indicators drop with 10%

DistriNet

Application Retrain (months)
AnkiDroid =
BoardGameGeek 9
ConnectBot =
CoolReader 10
Crosswords 2
FBReader -~
K9Mail 12
KeePassAndroid -~
MileageTracker 1
Mustard =

Vulnerability Prediction in Android Apps

-- no retraining is required

Monday 10 June 13 week

Monday 10 June 13 week

Most influential features

Monday 10 June 13 week

Most influential features

> e, Exception, try, catch (error handling)

Monday 10 June 13 week

Most influential features

> e, Exception, try, catch (error handling)
< if (branching)

Monday 10 June 13 week

Most influential features

> e, Exception, try, catch (error handling)
< if (branching)

2 null (pointer algebra)

Monday 10 June 13 week

Most influential features

> e, Exception, try, catch (error handling)
if (branching)

=
2 null (pointer algebra)
=

java, org (import statements)

Monday 10 June 13 week

Most influential features

> e, Exception, try, catch (error handling)
if (branching)

null (pointer algebra)

java, org (import statements)
new, Log (others)

Monday 10 June 13 week

Most influential features
> e, Exception, try, catch (error handling)
if (branching)
null (pointer algebra)
java, org (import statements)
new, Log (others)

Produced by InfoGain

Monday 10 June 13 week

Use of Fortify tool for vulnerability extraction

=

Some research results have shown that there are strong
correlations between static analysis metrics and the
quality of reported vulnerabilities

Manual validation seems to confirm our findings (work in
progress)!

We are currently validating the same technique on
Mozilla Firefox and the results are slightly better than
the existing work

Monday 10 June 13 week

We have presented a novel technique for predicting
vulnerable Java files in Android applications

< The obtained results are very promising

We are working in parallel on 2 additional tracks

< Vulnerability prediction for Firefox/Chrome in C++

< Vulnerability prediction for PHP

Monday 10 June 13 week

We are looking to validate our technique further

If you have data you are willing to share with us, we
would be glad to collaborate

Monday 10 June 13 week

