
Securing Containers 
on the High Seas

Jack Mannino @ OWASP Belgium
September 2018



Jack Mannino
•CEO at nVisium, since 2009
•Former OWASP Northern Virginia 
chapter leader
•Hobbies: Scala, Go and Kubernetes

Who Am I?



Container Security Lifecycle

Design Build Ship Run



Containers are __



Containerized Architecture

https://kubernetes.io/blog/2018/07/18/11-ways-not-to-get-hacked/



Who Does What Now?



Design



Secure Architecture

ü Orchestration & Management - Control 
Plane

ü Network Segmentation & Isolation
ü Encrypted communications
ü Authentication (container & cluster-level)
ü Identity Management & Access Control
ü Secrets Management
ü Logging & Monitoring



• Open Container Initiative (OCI) spec 
promotes a broader set of container 
tech (life beyond Docker)

• Isolate containerized resources 
differently

• Goal is to prevent escaping from the 
container

• Isolation via Namespaces & Control 
Groups

• Isolation via Hypervisor
https://blog.jessfraz.com/post/containers-security-and-echo-chambers/

Picking the Right Container Runtime



We can solve security issues through patterns that lift security out of the 
container itself. Example – Service Mesh with Istio & Envoy

Leveraging Design Patterns for Security



Build



• Build steps focus on code repositories and container registries

• Run Tests -> Package Apps -> Build Image

• Build first level of security controls into containers

• Orchestration & management systems can override these controls and 
mutate containers through an extra layer of abstraction

Securing the Build Process



Example: Insecurely Configured Docker Container



• Your resources may be built with 
external tools, formats, or code

• Terraform (.tf), CloudFormation, 
Helm/Charts, Brigade, 
Metaparticle, etc.

• Create reproducible builds to 
streamline deployments

• Example – Helm/Charts use Go 
templates

Chart for Jenkins 
https://github.com/kubernetes/charts/blob/master/stable/jenkins/values.yaml

Other Configuration Formats

https://github.com/kubernetes/charts/blob/master/stable/jenkins/values.yaml


• Focus on keeping the attack surface small
• Use base images that ship with minimal installed packages and 

dependencies
• Use version tags vs. image:latest
• Use images that support security kernel features (seccomp, apparmor, 

SELinux)

$ grep CONFIG_SECCOMP= /boot/config-$(uname -r)
$ cat /sys/module/apparmor/parameters/enabled

Base Image Management



• Circa 2003, root privileges were broken into 
a subset of capabilities.
• This feature enables us to reduce the 

damage a compromised root account can do.
• Docker default profile allows 14 of 40+ 

capabilities.
• Open Container Initiative (OCI) spec restricts 

this this even further:
• AUDIT_WRITE
• KILL
• NET_BIND_SERVICE

Restricting Root Capabilities

Docker Default Capabilities
• CHOWN
• DAC_OVERRIDE
• FOWNER
• FSETID
• KILL
• SETGID
• SETUID
• SETPCAP
• NET_BIND_SERVICE
• NET_RAW
• SYS_CHROOT
• MKNOD
• AUDIT_WRITE
• SETFCAP



• More often than not, your 

container does not need root

• Often, we only need a subset of 

capabilities

• Limit access to underlying host 

resources (network, storage, or IPC)

docker run -d --cap-drop=all -
-cap-add=net_raw my-image

Example – Ping command 
requires CAP_NET_RAW

We can drop everything else.

Limiting Privileges



Kernel Hardening

• Restrict the actions a container 

can perform

• Seccomp is a linux kernel feature 

that allows you to filter dangerous 

syscalls

• Docker has a great default profile 

to get started



Mandatory Access Control (MAC)

• SELinux and AppArmor allow 
you to set granular controls 
on files and network access.

• Limits what a process can 
access or do

• Logging to identify violations 
(during testing and 
production)

• Docker leads the way with its 
default AppArmor profile



• Vulnerabilities can possibly exist in:
• Container configurations
• Container packages
• Application Code & Libraries

• Solutions:
• Clair
• Dependency Check
• Brigade
• Commercial tools

Container Package Management



Ship



• Securely move the container from 
registry -> runtime environment

• Controlled container promotion and 
deployment

• Validate the integrity of the container
• Validate security pre-conditions

Ship



What Am I Even Shipping?

https://kubernetes.io/blog/2017/11/securing-software-supply-chain-grafeas/



Validating Integrity & Signing Builds

• Ensures integrity of the 
images and publisher 
attestation

• Sign to validate pipeline 
phases

• Example – Docker Content 
Trust & Notary, GCP’s Binary 
Authorization 

• Consume only trusted 
content for tagged builds



Validating Security Pre-Conditions

• Allow or deny a container's cluster 
admission

• Centralized interfaces and 
validation

• Mutate a container's security 
before admission

• Example – Kubernetes calls this a 
PodSecurityPolicy



Run



Typically, containers are managed, 
scheduled, and scaled through 
orchestration systems.

Kubernetes, Mesos, Docker Swarm, 
AWS ECS, etc.

• Cluster/Service authentication
• Identity Management & Access 

Control
• Policy & Constraint Enforcement
• Propagation of secrets
• Logging & Monitoring

Example – Kubernetes 
Control Plane

Run



Control Plane Hardening

• The Control Plane manages the cluster’s state 
and schedules containers.
• A privileged attack against a control plane node 

or pod can have serious consequences.
•Managed services such as Azure AKS, AWS EKS 

and Google Cloud Platform’s GKE abstract away 
the control plane for you.



• Deploy, modify, and kill services
• Run commands inside of containers
• Kubernetes, Marathon, and Swarm 

APIs work similarly
• Frequently deployed without 

authentication or access control

Management APIs



• Authenticate subjects (users and 
service accounts) to the cluster

• Authentication occurs at several layers
• Authenticating API subjects
• Authenticating nodes to the cluster
• Authenticating services to each 

other

Avoid sharing service accounts across 
multiple services! Example – K8s JWT Generator

Authentication



K8s - Create a Role

K8s - Bind a Subject to the Role

Authorization & Access Control

• Subjects should only have 
access to the resources they 
need

• Limit what a single hostile user 
or container can achieve)

• Multiple vantage points - to the 
API, between containers, 
between control plane 
components



Logging and Monitoring

• OWASP Top 10 2017 – A10 = Insufficient Logging & 

Monitoring

• Container lifecycle is short and unpredictable

• Visibility through telemetry and logs

• Tag and label assets for context and de-duplication

• Focus on visibility at these levels

• Application-level logging

• Container-level logging

• Orchestration/Scheduler logging

• Cloud/Infrastructure logging (services and 

systems)



Example - Creating a K8s Audit Policy

•Building an audit policy
• API accessible via the 

audit.k8s.io group
• Metadata – user, timestamp, 

verb, resources but no 
request or response

• Request – request only
• RequestResponse – request 

and response
• None - do not log



• Send security relevant events to a Webhook endpoint
• --authorization-webhook-config-file=webhook.config

Webhooks



Secrets Management

• Safely inject secrets into containers at 
runtime

• Reduced footprint for leaking secrets
• Dynamic key generation and rotation 

is ideal
• Anti-patterns:
• Hardcoded
• Environment variables

• Limit the scope of subjects that can 
retrieve secrets



Secrets Management

Docker
docker run –it –e “DBUSER=dbuser” –e “DBPASSWD=dbpasswd” 
mydbimage

echo <secret> | docker secret create some-secret

Kubernetes
kubectl create secret generic db-user-pw --from-file=./username.txt --
from-file=./password.txt

kubectl create –f ./secret.yaml



Nothing is Perfect



Beware of Plain Text Storage

Prior to 1.7, secrets were stored in 
plain text at-rest

$ ls /etc/foo/
username
password 

$ cat /etc/foo/username

admin 
$ cat /etc/foo/password 
1f2d1e2e67df

As of v1.7+, k8s can encrypt 
your secrets in etcd

Not perfect at all, either.



https://blog.openshift.com/vault-integration-using-kubernetes-
authentication-method/

Dynamic Loading & Rotation



Example - Retrieve and Mount a Secret



Policy & Constraint Enforcement

• Harden by applying a Security 
Context at the pod or container 
level
• Mutate the container's 
configuration as needed

• i.e- overrides a Dockerfile

Setting PodSecurityContext SecurityContext

Allow Privilege 
Escalation

X

Capabilities X

Privileged X

Read-Only Root 
Filesystem

X

Run as Non Root X X

Run as User X X

SELinux Options X

FS Group X

Supplemental 
Groups

X

Example – K8s Pod & Container Security Context



Conclusion

• Secure your container ecosystem and 
supply chain, not just the runtime

• You probably don't need root – start 
with minimally privileged containers

• Focus on layered security and strong 
isolation

• Ensure visibility from a developer's laptop 
to running in production



Thanks! Keep in Touch

Jack Mannino
Twitter @jack_mannino
Linkedin - https://www.linkedin.com/in/jackmannino
Email - Jack@nvisium.com


