3

SECURE CODE

WARRIOR

SECURE CODE

WARRIOR

Nathan Desmet

Lead Engineer

* Degree in Applied Informatics - Computer and Cyber
Crime Professional

* Co-founder of Sensei Security (which is merged with
SCW)

* Leading the development of Sensei.

SECURE CODE

WARRIOR

Pieter De Cremer, ir.

Engineer and Ph.D Candidate

M.Eng — in Computer Science Engineering

Thesis on binary patch diffing

Personal grant from Flemish Government to work as
a Ph.D. student

One of the R&D leads at Secure Code Warrior

SECURE CODE

WAHRRIOH

Vendor Pitch-Free Zone u YOURSELVES
Promise ’

I I'IIESEH'I'IHE

SECURE CODE

WAHRRIOH

> Today’s challenges

SECURE CODE

WAHRRIOH

Software developers around the world
~ Evans Data

Source: https.//evansdata.com/reports/viewRelease.php ?reportID=9

SECURE CODE

WAHRRIOH

111BN

Lines of code written by developers
every year ~ CSO Online

Source: https.//www.csoonline.com/article/3151003/application-development/world-will-need-to-secure-111-billion-lines-of-new-software-code-in-2017.html

SECURE CODE

WAHRRIOH

1to4

Exploitable Security Bugs in every 50 000
Lines of Code

Source: StackOverflow

SECURE CODE

WAHRRIOH

0%

Security incidents result from defects in
the design or code ~ DHS

Source: https://www.us-cert.gov/sites/default/files/publications/infosheet SoftwareAssurance.pdf

SECURE CODE

WAHRRIOH

21%

Of data breaches caused by software
vulnerability ~ Verizon

Source: Verizon, Data Breach Report, 2018 (but in there the last 10 years)

SECURE CODE

WAHRRIOH

1In3

of newly scanned applications had SQL
injections over the past 5 yrs ~ Cisco

Source: Cybersecurity as a Growth Advantage, Cisco, 2016

N\ SECURE CODE
7/ WARRIOA

SECURE CODE

WAHRRIOH

> How did we end up here?

¢\ SECURE CODE
v WARRIOR

Corporates had a branding website, the
Internet was mostly for geeks

> AppSec was virtually non-existent in corporate world

> Hacking was focussed on exploiting infrastructure
vulnerabilities (bof, race conditions, fmt str*)

Ap psec In 2000 > Research on first web app weaknesses
> OWASP started and Top 10 released!

> Penetration testing was black magic

F**k it. We’ve got bigger problems (Y2K)
than worrying about Application Security

AppSec in 2010

SECURE CODE

WAHRRIOH

Companies started offering web-based services;
Web 2.0 and Mobile are new

> Penetration testing was THE thing

> Web Application Firewalls will stop everything

> Paper-based secure coding guidelines

> Static Code Analysis Tools (SAST) emerge

nJ

Monthly data breaches,
Hackers everywhere,

Privacy, GDPR, PCI-DSS, HIPAA
Putin

AppSec in 2018

¢\ SECURE CODE
v WARRIOR

Everything runs on software.

Cybersecurity & AppSec are hot topics.

> SAST is still here...

> Runtime Application Security Protection (RASP)

> Dynamic Application Security Testing (DAST)

> Interactive Application Security Testing (IAST)

> Crowd-Sourced Security Testing (CSST?)

> DevSecOps is getting traction

- Containerisation

- Integrating security and ops into dev
- Security pipelining

> SHIFT Left

SECURE CODE

WAHRRIOH

Challenge - Pen-testing mostly sucks

AppSec in 2018

Security Experts Developers

SECURE CODE

WAHRRIOH

Challenge - “Black Hole” of security knowledge

SAST

AppSecin 2018 S

SECURITY EXPERTS RESULTS ARE LOADED DEVELOPER KNOWLEDGE
TEST AND FIND INTO THE BUG FINDS WAY TO FIX THE DISAPPEARS INTO A
VULNERABILITIES TRACKING SYSTEM PROBLEM BLACK HOLE

el
-
SENSEI

IFORTIFY | | €

@ CHECKMARX

DEVELOPER FINDS
WAY TO FIX THE

PROBLEM

SECURE CODE

WARRIOR

Security Project

N SECU Co
7 WARRIOR

SIMILAR
VULNERABILITY
REAPPEARS

Each
developer
gains some
security
knowledge
as they fix
3 bug

Therefore, the
company's whole
'security brain’
remains incomplete
and bugs are
’ re-introduced

WARRIOR

=» 125+ frequently occurring
vulnerability types

=» Same vulnerabilities
continually re-introduced

=» New vulnerabilities also
introduced into code

=» Today’s apps ripe with
vulnerabilities

~
S
)
=
®
(S
@
)
o
o
<

SECURE CODE

WAHRRIOH

SHHF START left
Scale and Make an Impact as an AppSec Pro

SECURE CODE

WAHRRIOH

> Where does
enforcing coding guidelines
come in?

& WARRIOR

™\ SECURE CODE
7 WARRIOR

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();

N\ SECURE C

W WAFIFIIUF!

B.3.2 XML External Entity (XXE) Processing

Description

An XML External Entity attack is a type of attack against an application that parses XML input.
This attack occurs when XML input containing a reference to an external entity is processed by a
weakly configured XML parser. This attack may lead to the disclosure of confidential data, denial
of service, server side request forgery, port scanning from the perspective of the machine where
the parser is located, and other system impacts.

£

It was possible to upload and receive data using the XML upload functionality on page:

e hittp://127.0.0.1:8080/beneficiaries
o hitp://127.0.0.1:8080/transfers

Evidence
* interbanking

Uploading XML files to the web application allows the attacker to read the server’s system files.
The example below can be applied to the reported list above. The XML processor parses the
uploaded XML and processes the external entity that has been included. This allows the attacker
to load and read files of the server.

<?xml version="1.0" encoding="UTF-8"2>
<!DOCTYPE foo |
<!ELEMENT £foo ANY>
<IENTITY xxe SYSTEM "file:///etc/passwd" >]>
<beneficiaries>
<beneficiary>
<name>&xxe; </name>
<account number>BE45000100020003</account_numbex>

<address>CGrotestofstraat 13</address>

"\

WARRIOR

=
Jo

LA Google xc

All Images Videos News Maps More Settings Tools

About 16.200.000 results (0,26 seconds)

Top 10-2017 A4-XML External Entities (XXE) - OWASP
https://iwww.owasp.org/index.php/Top_10-2017_A4-XML_Extemal_Entities_(XXE) v

Jan 1, 2018 - If the application uses SOAP prior to version 1.2, itis likely susceptible to XXE attacks if
XML entities are being passed to the SOAP framework.

XML external entity attack - Wikipedia
https://en.wikipedia.org/wiki’XML_external_entity_attack v

An XML Extemal Entity attack is a type of attack against an application that parses XML input.
Detailed guidance on how to disable XXE processing, or otherwise defend against XXE attacks is
presented in the XML External Entity (XXE) ...

Description - Examples

PayloadsAllTheThings/XXE injection at master - swisskyrepo ... - GitHub
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/XXE%20injection v

DOCTYPE replace [<IENTITY xxe SYSTEM "php:/filter/convert.base64-encode/resource=index.php">
> <contacts> <contact> <name>Jean &xxe; ...

What is an XXE Attack? - InfoSec Resources - InfoSec Institute
https://resources.infosecinstitute.com/xxe-attacks/ ~

May 15, 2018 - IT Security Training & Resources by InfoSec Institute.

U

‘.\J\ . . 0
./ WARRIOR

Top 10-2017 A4-XML External Entities (XXE)

2017 Table of Contents

+ A3-Sensitive Data Exposure AS5-Broken Access Control —

PDF version
eat Agents / Atta ectors 2 pakness pacts
App Specific Exploitability: 2 Prevalence: 2 Business ?
can exploit XML p ifthey |By default, many older XML processors allow specification |[These flaws can be used to extract data, execute a remote
can upload XML or include hostile content in an XML of an external entity, a URI that is dereferenced and request from the server, scan infernal systems, perform a
idocument, i code, cies or during XML processing. denial-of-service attack, as well as execute other attacks.
lintegrations. ISAST tools can discover this issue by inspecting [The business impact depends on the protection needs of
dependencies and configuration. DAST tools require all affected application and data.
additional manual steps to detect and exploit this issue.
[Manual testers need to be trained in how to test for XXE,
as it not commonly tested as of 2017.

Is the Application Vulnerable? How to Prevent
Applications and in particular XML-based web services or downstream integrations Developer training is essential to identify and mitigate XXE. Besides that, preventing
might be vulnerable to attack if: XXE requires:
« The application accepts XML directly or XML uploads, especially from untrusted « Whenever possible, use less complex data formats such as JSON, and avoiding
sources, or inserts untrusted data into XML documents, which is then parsed by an serialization of sensitive data.
XML processor. « Patch or upgrade all XML processors and libraries in use by the application or on
« Any of the XML processors in the application or SOAP based web services has the i ing system. Use Update SOAP to
document type definitions (DTDs)# enabled. As the exact mechanism for disabling SOAP 1.2 or higher.
DTD processing varies by processor, it is good practice to consult a reference such « Disable XML external entity and DTD processing in all XML parsers in the
as the OWASP Cheat Sheet XXE Prevention'. application, as per the OWASP Cheat Sheet 'XXE Prevention'.
« If the application uses SAML for identity processing within federated security or « Implement positive ("whitelisting”) server-side input validation, filtering, or
single sign on (SSO) purposes. SAML uses XML for identity assertions, and may sanitization to prevent hostile data within XML documents, headers, or nodes.
be vulnerable. « Verify that XML or XSL file upload functionality validates incoming XML using XSD
« If the application uses SOAP prior to version 1.2, it is likely susceptible to XXE validation or similar.

attacks if XML entities are being passed to the SOAP framework.

SAST tools can help detect XXE in source code, although manual code review is
Being vuinerable to XXE attacks likely means that the application is vulnerable to the best alternative in large, complex applications with many integrations.
denial of service attacks including the Billion Laughs attack

If these controls are not possible, consider using virtual patching, API security
gateways, or Web Application Firewalls (WAFs) to detect, monitor, and block XXE

attacks.
Example Attack Scenarios References
Numerous public XXE issues have been discovered, including attacking embedded OWASP
devices. XXE occurs in a lot of unexpected places, including deeply nested « OWASP Application Security . .

dependencies. The easiest way is to upload a malicious XML file, if accepted: + OWASP Testing Guide: Testing for XML Injection

« OWASP XXE Vulnerability
« OWASP Cheat Sheet: XXE Prevention
+ OWASP Cheat Sheet: XML Security

Scenario #1: The attacker attempts to extract data from the servi

Pmm—————————

) :
|<?xml version

I80-8859-1"7>

1.0" encoding

<IDOCTYPE foo [

A e S L S L

External

]

»ECU

WARRIOR

By

Top 10-2017 A4-XML External Entities (XXE)

+- A3-Sensitive Data Exposure

Threat Agents / Attack Vectors

App Specific

2017 Table of Contents

PDF version

Prevalence: 2

Attackers can exploit vulnerable XML processors if they
can upload XML cr include hostile content in an XML
document, exploiting vulnerable code, dependencies or
integrations.

By default, many older XML processors allow specification
of an external entity, a URI that is dereferenced and
evaluated during XML processing.

SAST tools can discover this issue by inspecting
dependencies and configuration. DAST tools require

additional manual steps 1o detect and expleit this issue.
Manual testers need to be trained in how to test for XXE,
as it not commonly tested as of 2017.

AS5-Broken Access Control —*

Business ?

These flaws can be used 1o extract data, execute a remote
request from the server, scan internal systems, perform a
denial-of-service attack, as well as execute other attacks.
The business impact depends on the protection needs of
all affected application and data.

Is the Application Vulnerable?

might be vulnerable to attack if:

Applications and in particular XML-based web services or downstream integrations

a Tha annliratinn arrante ¥YMI Airacths ar YMI anlaade acnacially fram nndrctad

How to Prevent

XXE requires:

Developer training is essential to identify and mitigate XXE. Besides that, preventing

a Whanauvar nnccihla 11ea lace rnmnlay Aata farmate cnich ae IO and aunidina

g

) s

UR

VIGHUQE IGDIGTD 11T0U W WD UQIITU 11 VW WU I IV AL,

as it not commonly tested as of 2017.

Is the Application Vulnerable?

Applications and in particular XML-based web services or downstream integrations
might be vulnerable to attack if:

« The application accepts XML directly or XML uploads, especially from untrusted
sources, or inserts untrusted data into XML documents, which is then parsed by an
XML processor.

Any of the XML processors in the application or SOAP based web services has
document type definitions (DTDs}% enabled. As the exact mechanism for disabling
DTD processing varies by processor, it is good practice to consult a reference such
as the OWASP Cheat Sheet XXE Prevention'.

If the application uses SAML for identity processing within federated security or
single sign on {SSO) purposes. SAML uses XML for identity assertions, and may
be vulnerable.

If the application uses SOAP prior to version 1.2, it is likely susceptible to XXE
attacks if XML entities are being passed to the SOAP framework.

Being vulnerable to XXE attacks likely means that the application is vulnerable to
denial of service attacks including the Billion Laughs attack

How to Prevent
Developer training is essential to identify and mitigate XXE. Besides that, preventing
XXE requires:

« Whenever possible, use less complex data formats such as JSON, and avoiding
serialization of sensitive data.

Patch or upgrade all XML processors and libraries in use by the application or on
the underlying operating system. Use dependency checkers. Update SOAP to
SOAP 1.2 or higher.

Disable XML exiernal entity and DTD processing in all XML parsers in the
application, as per the OWASP Cheat Sheet "XXE Prevention’.

Implement positive ("whitelisting™) server-side input validation, filtering, or
sanitization to prevent hostile data within XML documents, headers, or nodes.
Verify that XML or XSL file upload functionality validates incoming XML using XSD
validation or similar.

SAST toocls can help detect XXE in source code, although manual code review is
the best alternative in large, complex applications with many integrations.

If these controls are not possible, consider using virtual paiching, API security
gateways, or Web Application Firewalls (WAFs) to detect, monitor, and block XXE
attacks.

Example Attack Scenarios

References

A . P N G N N e W 0 Y e L AT L f o (N g RPN N BRTRL RE

Mrsia e

<J WARRIOR

»ECU

WARRIOR

@ | | anacks. |

Example Attack Scenarios References

Numerous public XXE issues have been discovered, including attacking embedded OWASP
devices. XXE occurs in a lot of unexpected places, including deeply nested
dependencies. The easiest way is to upload a malicious XML file, if accepted:

« OWASP Application Security Verification Standard
« OWASP Testing Guide: Testing for XML Injection
Scenario #1: The attacker attempts to extract data from the server: « OWASP XXE Vulnerability

D P R e e e T e e e e S A e b | « OWASP Cheat Sheet: XXE Prevention
« OWASP Cheat Sheet: XML Security

I “ "
1<?xml version="1.0" encoding="I180-88539-1"?7?>

<IDOCTYPE foo [
<!ELEMENT foo ANY >

External
o CWE-611: Improper Restriction of XXE &
« Billion Laughs Attackd?
o SAML Security XML External Entity Attacke?
« Detecting and exploiting XXE in SAML Interfacese?

<IENTITY xxe SYSTEM "file:///etc/passwd" >]>

<foo>&xxe;</foo>

Scenario #2: An atiacker probes the server's private network by changing the above

ENTITY line to:

RS, s o o s s o e o 55 5 S 2 e e e 1

: <IENTITY xxe SYSTEM "https://192.168.1.1/private” >]> :

e e e T e T e e e e e e —]
Scenario #3: An attacker attempts a denial-of-service attack by including a potentially
endless file:

A e e e e e e S i e e e e e S e 1

XML External Entity (XXE) Prevention Cheat Sheet

OLUAS

Cheat Sheets

Last revision (mm/ddlyy): 08/28/2018

{nide)

1 Introduction

11
12

16
17

General Guidance
CiC++
121 lxmi2
1.22 libxerces-c
Java
1.3.1 JAXP DocumentBuilderFactory, SAXParserFactory and DOMA4J
1.32 XMLinputFactory (a StAX parser)
1.33 TransformerFactory
1.34 Validator
1.35 SchemaFactory
136 SAXTransformerFactory
1.3.7 XMLReader
1.38 SAXReader
1.39 SAXBuilder
1.3.10 JAXB Unmarshaller
1311 XPathExpression
1.3.12 java.beans XMLDecoder
1.3.13 Other XML Parsers
1.8.13.1 Spring Framework MVC/OXM XXE Vulnerabilties
NET
141 LINQ1o XML
1.42 XmiDictionaryReader
1.43 XmiDocument
1.4.4 XmiNodeReader
1.45 XmiReader
1.46 XmiTextReader
1.46.1 Priorto NET 4.0
1462 NET4.0- NET 452
1.463 NET 452 and later
1.47 XPathNavigator
1.48 XsiCompiledTransform
i0s
151 lioxmi2
1.52 NSXMLDocument
PHP

References

2 Authors and Primary Editors

3 Otner Cheatsheets

Introduction

XML eXternal Entity injection (XXE), which is now part of the OWASP Top 10, is a type of attack against an application that parses XML input. This attack occurs when
untrusted XML input containing a reference to an external entity is processed by a weakly configured XML parser. This attack may lead to the disclosure of
confidential data, denial of service, Server Side Request Forgery (SSRF), port scanning from the perspective of the machine where the parser is located, and other system
impacts. The following guide provides concise information to prevent this vulnerability. For more information on XXE, please visit XML External Entity (XXE) Processing.

General Guidance
The safest way to prevent XXE is always to disable DTDs (External Enies) compietely. Depending on the parser, the method shouid be similar to the following:

he xal. ", true);

factory.

Disabling DTDs also makes the parser secure against denial of services (DOS) attacks such as Billion Laughs. It itis not possible to disable DTDs completely, then external
entities and external document type declarations must be disabled in the way that's specific to each parser.

Detailed XXE Prevention guidance for a number of languages and commonly used XML parsers in those languages is provided below.

C/C++

libxmi2
The Enum xmiParserOptions should not have the following options defined:

« XML_PARSE_NOENT: Expands eniities and substitutes them with replacement text
« XML_PARSE_DTDLOAD: Load the external DTD
Note: Per: https/mail.gnom: 12-0 htmig?, starting with lioxmi2 version 2.9, XXE has been disabled by default as committed by the

following patch: http://git.gnome. .
Search for the usage of the following APIs to ensure there is no "XML_PARSE_NOENT" and "XML_PARSE_DTDLOAD" defined in the parameters.

« xmiCixtReadDoc . xmiCtxtReadFd . xmiCtxtReadFile . xmiCtxtReadiO . xmiC: y . xmiCtxtUseOptions . xmIP: ntext . xmiReadDoc .

xmiReadFd , xmiReadFile . xmiReadIO . xmiReadMemory

libxerces-c

Use of XercesDOMParser do this to prevent XXE:

XercesDOKParser +parser = new XercesDOMParser;

false);
Use of SAXParser, do this to prevent XXE
SAXParser+ parser = new SAXParser;
s i i true);
Use of SAX2XMLReader, do this to prevent XXE:
reader O3
XML 1 1tEnti fon, true);

Java

Java applications using XML lioraries are particularly vulnerable to XXE because the default settings for most Java XML parsers is to have XXE enabled. To use these
parsers safely, you have to explicitly disable XXE in the parser you use. The following descries how to disable XXE in the most commonly used XML parsers for Java.

JAXP Y, y and DOM4J

DocumentBuilderFactory, SAXParserFactory and DOM4J XML Parsers can be oﬂnhguled using the same techniques to protect them against XXE. Only the
DocumentBuilderFactory example is presented here. The JAXP method allows a developer to control which

XML processor features are enabled or disabled. The features can either be set on the lsmory or the underlying XMLReader setFeaturet? method. Each XML pmcessor
implementation has its own features that govern how DTDs and exteral entities are processed

For a syntax highlighted example code snippet using SAXParserFactory, look here(?.

import j 1 i +
import 1 7/ catching features

abf = i)i
Strina PEATURE = null:

o (FEATURE, false)

o (FEATURE, false)

xterasl DTos as well

o (FEATURE, alee) 7

Tiaothy Norgan's 2014 paper:

‘

>

e
oz ure atsavics

o data/dafinieio)
iacrs” o ov miliion Tevahe ox ducoms

7/ zemaintng parser logic

3 =lt=l (Fsrsorcomtigurationtzcaptio

"X Schena, DTD, and Eatity Attacks®

into the 1.

a file that dossn't ox
roci Tobecaption osoutred, I8 aay siiil

safobuilder =)

Xorces 1 Foaturess:
+ Do notnclude external enties by setg tis feaure 10 £alse
+ Do notnclude paramete erfies by seting s fesure fo faise
- Do notnclude oxornal DTDS by sefing s foatro fo £alse
Xoross 26 Fostures#:
« Disalow an nine DT by sftng i foare 1. true.
+ Do notnclude oxornal anitios oy st tisfoatured 1o false.
+ Do notnclude parametar onifsos by seting s featurod o £alae
+ Do notnclude external DTDS by seting s featuse 1o £alse
Note:

document”) ;

possibler * + o.gethessage());

XMLinputFactory (a StAX parser)

suxe "

cloy

Toprotect a Java XMLnpuFactory from XX, do this:

lTaputPactory.setPropes y (RNLinpstFactory . SUPPORS_DTD, falso); // This disables DRds enticely fo

TransformerFactory
To protect Javaxmi ransform TransformerFaciory from XXE, do s

6. s0tAtLE bt (XHLConstants ACCESS_EXTERNAL DI,
£ s0tALLe bt (XMLConstants. ACCESS_EXTERNAL ST

Validator

“Toprtocta javax xmivalaton Valdator from XXE, do ts:

hetps//

neveelLdator ()
roperty (RLConstants. ACCESS, BXTERNAL DTD,)

validator. setProperty(XMiConstants. ACCESS_EXTERNAL SCHEMA, **);

‘SchemaFactory

“Toprtecta javax xmivaliaton SchemaFactory from XXE, do s

n

dothis

£.s0tAttr bute (XMLConstants. ACCESS_EXTERIAL 07D, ")
S£Isetaeae bt (OCenstants. ACCESS DXIERIAL STHLESSERS,
$tor(sosrce)

n

)

Eaiea)s 1/ disable sstermal entiies

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
String FEATURE = null;

FEATURE = "http://apache.org/xml/features/disallow-doctype-decl";
dbf.setFeature(FEATURE, true);

DocumentBuilder safebuilder = dbf.newDocumentBuilder();

J WARRIOR

ECURE CODE
Preventing XXE

WAFIHIUFI

DocumentBuilderFactory dbf =
String FEATURE = null;
FEATURE = "http://apache.org/xml/features/disallow-doctype-decl”;

dbf.setFeature(FEATURE, true);
DocumentBuilder safebuilder =

DocumentBuilderFactory.newInstance();

dbf.newDocumentBuilder();

On DocumentBuilderFactory
call setFeature with these parameters

before calling newDocumentBuilder

J WARRIOR

'

i

- P\ SECURE CODE
7 WARRIOR

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();

SECURE CODE

Coding guideline WARRIOR

. DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();

On DocumentBuilderFactory
call setFeature with these parameters

before calling newDocumentBuilder

SECURE CODE

Coding guideline WARRIOR

E

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setFeature(name: "http://apache.org/xml/features/dissalow-doctype-decl"”, value: true);
DocumentBuilder builder = factory.newDocumentBuilder();

On DocumentBuilderFactory
call setFeature with these parameters

before calling newDocumentBuilder

N\ SECURE C

W WAFIFIIUF!

B.3.2 XML External Entity (XXE) Processing

Description

An XML External Entity attack is a type of attack against an application that parses XML input.
This attack occurs when XML input containing a reference to an external entity is processed
veakly configured XML parser. This attack may lead to the disclosure of confidential dg ial
S rvice, server side request forgery, port scanning from the perspective of the g e where
the P is located, and other system impacts.

g upload and receive data using the XML upload funci on page:

It was possis

o hitp://127.09R80/beneficiaries
http://127.0.0.1:5Mansfers

Evidence

* interbanking

Uploading XML files to the ¥oplication allows the ker to read the server's system files.
The example below cz applied to the reported list abS e XML processor parses the
uploaded XML ag gcesses the external entity that has bee ded. This allows the attacker
to load and es of the server.

-

ml version="1.0" encoding="UTF-8"2>
<!DOCTYPE foo |
<!ELEMENT foo ANY>
<IENTITY xxe SYSTEM "file:///etc/passwd" >]>
<beneficiaries>
<beneficiary>
<name>&xxe;</name>
<account number>BE45000100020003</account_numbex>

<address>CGrotestofstraat 13</address>

WARRIOR

Videos News Maps More Tools

Images

About 16.200.000 resuits (0,26 seconds)

-2017 A4-XML External Entities (XX

tion - Examples

... - GitHub

in v

PayloadsAllTheThings/XXE injection at master - swiss
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/XXE %2
DOCTYPE replace [<IENTITY xxe SYSTEM "php:/fiilter/convert.base64-encode/resou
> <contacts> <contact> <name>Jean &xxe; ...

What is an XXE Attack? - InfoSec Resources - InfoSec Institute
https://resources.infosecinstitute.com/xxe-attacks/ ~
May 15, 2018 - IT Security Training & Resources by InfoSec Institute.

Top 10-2017 A4-XML External Entities (XXE)

+ A3-Sensitive Data Exposure

Agents / Atta ecto

Exploitability: 2

2017 Table of Contents

PDF version

By default, many older XML processors allow specification
of an external entity, a URI that is dereferenced and

App Specific Prevalence: 2

rs can exploit vulnerable XML processors if they
C: ML or include hostile content in an XML
docum L code, cies or during XML processing.
lintegrations.

ISAST tools can discover this issue by inspecting
dependencies and configuration. DAST tools require
additional manual steps to detect and exploit this issue.
[Manual testers need to be trained in how to test for XXE,

as it not commonly tested as of 2017.

AS-Broken Access Control —

Business ?
These flaws can be used to extract data, execute
request from the server, scan internal syste:
denial-of-service attack, as well as exe ittacks.
[The business impact depends o1 ion needs of
all affected application an

Is the Application Vulnerable?

Applications and in particular XML-based web services or
might be vulnerable to attack if:

XML processor.

DTD processing varies by processor, it is good practi
as the OWASP Cheat Sheet XXE Prevention'.
If the application uses SAML for identity pj
single sign on (SSO) purposes. SA!

be vulnerable.

If the application uses
attacks if XML eni

« The application accepts XML directly or XML uploads, especially froi
sources, or inserts untrusted data into XML documents, which is then parsi

Any of the XML processors in the application or SOAP based web rlying
document type definitions (DTDs)% enabled. As the exact
ithin federated security or

for identity assertions, and may

0 version 1.2, it is likely susceptidle to XXE
ing passed to the SOAP framework.

How to Preven

integrations Developer trgi

XXE ri

ntial to identify and mitigate XXE. Besides that, preventing

ver possible, use less complex data formats such as JSON, and avoiding
erialization of sensitive data.
itch or upgrade all XML processors and libraries in use by the application or on

r disabling S igher.
a reference such

application, as
Implement positive (

validation or similar.

Disable | entity and DTD processing in all XML parsers in the

sanitization to prevent hos
Verify that XML or XSL file uploat

SAST tools can help detect XXE in source cox

system. Use Update SOAP to

ASP Cheat Sheet XXE Prevention'.
") server-side input validation, filtering, or
ihin XML documents, headers, or nodes.
[ty validates incoming XML using XSD

manual code review is

<IDOCTYPE foo [

A e S L S L

dependencies. The easiest way is to upload a malicious XML file, if accepted:

Scenario #1: The attacker attempts to extract data from the server:

1 ‘ " " s -
1<?xml version="1.0" encoding="I180-8859-1"?>

« Being vul E attacks likely means that the application is vulnerable to the best alternative in large, complex applications egrations.
ot lacksincucig e Billon Eaugns atiack If these controls are not possible, consider using virtual patchind® rity
gateways, or Web Application Firewalls (WAFs) to detect, monitor, ant
attacks.
Example Attack Scenarios References
Numerous public XXE issues have been discovered, including attacking embedded OWASP
devices. XXE occurs in a lot of unexpected places, including deeply nested « OWASP A Security. . .

+ OWASP Testing Guide: Testing for XML Injection

External

« OWASP XXE Vulnerability
« OWASP Cheat Sheet: XXE Prevention
+ OWASP Cheat Sheet: XML Security

-
v,

=-C U -

WARR

!

IOR

XML External Entity (XXE) Prevention Cheat Sheet

LJAS

Cheat Sheets

Last revision (mm/ddlyy): 08/28/2018

[nide)
1 Introduction
1.1 General Guidance
12 CiC++
121 lxmi2
1.22 libxerces-c
13 Java
1.3.1 JAXP DocumentBuilderFactory, SAXParserFactory and DOMA4J
1.32 XMLinputFactory (a StAX parser)
1.33 TransformerFactory
1.34 Validator
1.35 SchemaFactory
136 SAXTransformerFactory
1.3.7 XMLReader
1.38 SAXReader
1.39 SAXBuilder
1.3.10 JAXB Unmarshaller
1311 XPathExpression
1.3.12 java.beans XMLDecoder
1.3.13 Other XML Parsers
1.8.13.1 Spring Framework MVC/OXM XXE Vulnerabilties
14 NET
141 LINQ1o XML
1.42 XmiDictionaryReader
1.43 XmiDocument
1.4.4 XmiNodeReader
1.45 XmiReader
1.46 XmiTextReader
1.46.1 Priorto NET 4.0
1462 NET4.0- NET 452
1.463 NET 452 and later
1.47 XPathNavigator
1.48 XsiCompiledTransform
15 i0S
151 lioxmi2
1.52 NSXMLDocument
16 PHP
1.7 References
2 Authors and Primary Editors
3 Otner Cheatsneets

Introduction

XML eXtornal Entity injection (XXE), which is now part of the OWASP Top 10, is a type of attack against an application that parses XML input. This attack occurs when
untrusted XML input containing a reference to an external entity is processed by a weakly configured XML parser. This attack may lead to the disclosure of
confidential data, denial of service, Server Side Request Forgery (SSRF), port scanning from the perspective of the machine where the parser is located, and other system
impacts. The following guide provides concise information to prevent this vulnerability. For more information on XXE, please visit XML External Entity (XXE) Processing.

General Guidance

The safest way to prevent XXE is always to disable DTDs (External Entities) completely. Depending on the parser, the method should be similar to the following:

", true);

factory.

Disabling DTDs also makes the parser secure against denial of services (DOS) attacks such as Billion Laughs. It itis not possible to disable DTDs completely, then exterr
entities and external document type declarations must be disabled in the way that's specific to each parser.

Detailed XXE Prevention guidance for a number of languages and commonly used XML parsers in those languages is provided below.

XXE has been disabled by default as committed by the

Search for the usage of the following APIS PARSE_DTDLOAD" defined in the parameters.
« xmiCtxtReadDoc . xmiCtxtReadFd .
xmiReadFd . xmiReadFile . xmiReadlO . xmiRead

iMemory . xmiCixtUseOptions . xmiParseinNodeContext . xmiReadDoc ,

libxerces-c

Use of XercesDOMParser do this to prevent XXE;

XercesDOMParser *parser = Boonparser;
parser->setCreateEnt.

Use of SAXParse

Barser = new SAXParser;
'setDisableDefaultEntityResolution(true);

Use of SAX2XMLReader, do this to prevent XXE

AX2XMLReader* reader 03
s XMLUni 1 1 true);

Java

Java applications using XML lioraries are particularly vulnerable to XXE because the default settings for most Java XML parsers is to have XXE enabled. To use these
parsers safely, you have to explicitly disable XXE in the parser you use. The following descries how to disable XXE in the most commonly used XML parsers for Java.

JAXP Y. y and DOM4J
DocumentBuilderFactory, SAXParserFactory and DOM4J XML Parsers can be oﬂnhguled using the same technigues to protect them against XXE. Only the
DocumentBuilderFactory example is presented here. The JAXP method alioy devels to control which

XML processor features are enabled or disabled. The features can either be set on the Ismory or the underlying XMLReader setFeaturet? method. Each XML processm
implementation has its own features that govern how DTDs and exteral entities are processed

For a syntax highlighted example code snippet using SAXParserFactory, look here(?.

import j 1 i +
import 1 7/ catching features

abf =

Strina PEATURE = null:

trestare(FEATURS, faise) s

be. setPoature (FATURE, £else);

1
xnL/ features/monvalldating Load-extoranl-atd”;

>

e ity el ee o
oz ure atsevics
Sinitions/s

9 2 i)
17 o oo setecns(owcn o Diliion’ Lovshe ox Secomprereion boubs via “Jart®) are a risk.”

7/ zemaintng parser logic

3 utcn (srsorcmtigrationtzcuption) (
catch a failed sotFeaturs fout

ercontigurationtscuption was thown. The festare * +
4 probably not supported by your T

into the XML documont”);

)
cuteh lomscapsion o) (
XKE that. poiats to a filo that dossa't ox
rroct Tomiception becutred, THE ey SLiLL possibler © + o.getiessage)s

safobuilder =)

Xorces 1 Foaturess:
+ Do notnclude external enties by setg tis feaure 10 £alse

+ Do notnclude paramete erfies by seting s fesure fo faise
- Do notnclude oxornal DTDS by sefing s foatro fo £alse
Xoross 26 Fostures#:

« Disalow an nine DT by sftng i foare 1. true.

+ Do notnclude oxornal anitios oy st tisfoatured 1o false.
+ Do notnclude parametar onifsos by seting s featurod o £alae
+ Do notnclude external DTDS by seting s featuse 1o £alse
Note:

Tiothy Morgan's 2014 paper: "ML Schema, DID, and Eatity Ateacks®

XMLinputFactory (a StAX parser)
suxe "

e
Toprotect a Java XMLnpuFactory from XX, do this:

Loy ausTroperty OXLnpusTactory SUPORS 03 felse); // This disabian D7Du ansizely o th v
2 e); /1 disable external smeities

TransformerFactory
To protect Javaxmi ransform TransformerFaciory from XXE, do s

6. s0tAtLE bt (XHLConstants ACCESS_EXTERNAL DI,
£ s0tALLe bt (XMLConstants. ACCESS_EXTERNAL ST

Validator

“Toprtocta javax xmivalaton Valdator from XXE, do ts:

sastory

ScremaFacioy from XXE, do s

oW
factozy.setproperey
cactory.setproperey(
Sehone sohema = Sastory.

n

‘SAXTransformerFactory

dothis

)

£.s0tAttr bute (XMLConstants. ACCESS_EXTERIAL 07D, ")
S£Isetaeae bt (OCenstants. ACCESS DXIERIAL STHLESSERS,
$tor(sosrce)

n

i\ SECURE CODE
7 WARRIOR

WARRIOR

=D 3 BN KR

Pen testing Breaches
Code analysis

WARRIOR

=D 3 BN KR

Code analysis Code analysis Breaches
Code review Pen testing

WARRIOR

=D 3 BN KR

Code analysis? Code analysis Code analysis Breaches
Pen testing

* User input

doGet
request.getParameter

isAuthorized readXML
user.hasRole factory.newDocBuilder

"\ SECURE CODE
7 WARRIOR

* User input

doGet
request.getParameter

isAuthorized readXML
user.hasRole factory.newDocBuilder

"\ SECURE CODE
7 WARRIOR

SECURE

WARRIOR

SECURE

WARRIOR

Day 1

readXML

factory.newDocBuilder

WARRIOR

Day 2

isAuthorized readXML

user.hasRole factory.newDocBuilder

"\ SECURE CODE
7 WARRIOR

* User input
Day 3

doGet

request.getParameter

isAuthorized readXML
user.hasRole factory.newDocBuilder

"\ SECURE CODE
7 WARRIOR

* User input

doGet
request.getParameter

isAuthorized readXML
user.hasRole factory.newDocBuilder

Develop

* User input

doGet
request.getParameter

Day 4

isAuthorized readXML

user.hasRole factory.setFeature
factory.newDocBuilder

-
v

SECURE C

WAH

RIOR

WARRIOR

=D 3 BN KR

COWis? Code analysis Code an_alysis Breaches
Code review Pen testing
Coding

guidelines

SECURE

WARRIOR

Day 1

readXML

factory.newDocBuilder

SECURE

WARRIOR

readXML
factory.newDocBuilder

SECURE

WARRIOR

readXML
factory.setFeature
factory.newDocBuilder

SECURE CODE

WAHRRIOH

> Other advantages for coding guidelines

* User input

doGet
request.getParameter

isAuthorized readXML
user.hasRole factory.newDocBuilder

:l'a"

- P\ SECURE CODE
7 WARRIOR

'

i

- P\ SECURE CODE
7 WARRIOR

* User input

readXML
factory.newDocBuilder

™\ SECURE CODE
7 WARRIOR

* User input

readXML
factory.newDocBuilder

™\ SECURE CODE
7 WARRIOR

* User input

readXML
factory.newDocBuilder

™\ SECURE CODE
7 WARRIOR

* User input

2 months later

readXML

factory.newDocBuilder

™\ SECURE CODE
7 WARRIOR

* User input

2 months later

readXML

factory.newDocBuilder

™\ SECURE CODE
7 WARRIOR

* User input

2 months + 1 day?

readXML

factory.setFeature
factory.newDocBuilder

SECURE CODE

WAHRRIOH

> Final case for tool-based support

™\ SECURE CODE
7 WARRIOR

You

SECURE CODE

Coding guideline WARRIOR

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

factory.setFeature(name: ? , Vvalue: true);
[|

DocumentBuilder builder = factory.newDocumentBuilder();

On DocumentBuilderFactory
call setFeature with these parameters

before calling newDocumentBuilder

SECURE CODE

Coding guideline WARRIOR

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

factory.setFeature(name: "http://apache.org/xml/features/dissalow-doctype-decl"”, value: true);

DocumentBuilder builder = factory.newDocumentBuilder();

On DocumentBuilderFactory
call setFeature with these parameters

before calling newDocumentBuilder

SECURE CODE

WARRIOR

é"‘% APPLICATIONSECURITYINSIGHTS.SECURECODEWARRIOR.COM

(3 SECURECODEWARRIOR.COM
Y @SECCODEWARRIOR
N LINKEDIN.COM/COMPANY/SECURE-CODE-WARRIOR

f FACEBOOK.COM/SECURECODEWARRIOR/

