
JIM MANICO Secure Coding Instructor www.manicode.com

Zero to DevSecOps:
Security in a DevOps World

COPYRIGHT ©2019 MANICODE SECURITY

A little background dirt…

@jimmesta

§ 10 years of penetration testing,
teaching, and building security
programs

§ OWASP AppSec California organizer
and Santa Barbara chapter founder

§ Conference speaker
§ Been on both sides of the InfoSec

fence
§ Loves Clouds

2

COPYRIGHT ©2019 MANICODE SECURITY 3

Introduction to DevOps and Common Patterns

Infrastructure Security and Infrastructure as Code

Introducing Security to DevOps Environments

Introduction to DevOps

People, Process, and Technology

Microservices and Containers

A Trip Down Memory Lane

Where to Go Next

COPYRIGHT ©2019 MANICODE SECURITY 4

COPYRIGHT ©2019 MANICODE SECURITY 5

We Have a “Situation”

COPYRIGHT ©2019 MANICODE SECURITY 6

The Situation

COPYRIGHT ©2019 MANICODE SECURITY 7

“Our research has
uncovered 24 key
capabilities that drive
improvements in software
delivery performance in a
statistically significant way.”

The (Actual) Current State of Affairs

COPYRIGHT ©2019 MANICODE SECURITY

Continuous Delivery Capabilities

§Version Control
§Deployment Automation
§Continuous Integration
§Trunk-Based Development
§Test Automation
§Test Data Management
§Shift Left on Security
§Continuous Delivery

8

COPYRIGHT ©2019 MANICODE SECURITY

Architecture Capabilities

§Loosely Coupled Architecture

§Empowered Teams

§Customer Feedback

§Working in Small Batches

§Team Experimentation

9

COPYRIGHT ©2019 MANICODE SECURITY

Lean Management and Monitoring Capabilities

§Change Approval Process

§Monitoring

§Proactive Notification

§WIP Limits

§Visualizing Work

10

COPYRIGHT ©2019 MANICODE SECURITY

Cultural Capabilities

§Supporting Learning

§Collaboration Among Teams

§Job Satisfaction

§Transformational Leadership

11

COPYRIGHT ©2019 MANICODE SECURITY

High Performers vs. Low Performers

§46x more frequent code deployments

§440x faster lead time from commit to deploy

§170x faster mean time to recover from
downtime

§5x lower change failure rate

12

COPYRIGHT ©2019 MANICODE SECURITY

High Performing Security Teams

“High-performing teams were more likely to
incorporate information security into the
delivery process. Their infosec personnel
provided feedback at every step of the
software delivery lifecycle, from design
through demos to helping out with test
automation. However, they did so in a way
that did not slow down the development
process…”

13

COPYRIGHT ©2019 MANICODE SECURITY

A Brief History of the SDLC

14

COPYRIGHT ©2019 MANICODE SECURITY 15

Part 1: The Waterfall Era

COPYRIGHT ©2019 MANICODE SECURITY 16

Part 1: The Waterfall Era

§Modeled software development after
what we knew and learned building
hardware

§Months (or years!) of planning and
preparation before a line of code is
written

§All good stories have to start
somewhere

COPYRIGHT ©2019 MANICODE SECURITY

Traditional SDLC AKA “Waterfall”

17

Idea Requirements
Gathering

Estimation and
Planning Development QA and Test Infrastructure

Planning
Manual

Deployment

§ Optimizes for risk management. Assuming the cost
of a mistake is high and tolerance for risk is low

§ Critical services still benefit from certain ”waterfall”
methodologies

§ Linear progression when deploying software
§ Relies heavily on human intervention and interaction

to “pass the code” on to the next step

Live

COPYRIGHT ©2019 MANICODE SECURITY 18

COPYRIGHT ©2019 MANICODE SECURITY 19

Part 2: The Agile Enlightenment

COPYRIGHT ©2019 MANICODE SECURITY 20

Part 2: The Agile Enlightenment

§Realization that software differs from hardware

§Competition emerges and first-to-market matters

§90’s was all about experimentations in effective software
deployment

§Sprints, daily standups, retrospectives emerge

§Manual testing, QA, and deployment

COPYRIGHT ©2019 MANICODE SECURITY 21

Part 2: The Agile Enlightenment

Rapid Application Development (RAD) Model

Dynamic Systems Development Method
Scrum

Extreme Programming

COPYRIGHT ©2019 MANICODE SECURITY

Agile / Scrum / Extreme

22

Idea

Development

Development

Quality
Testing

Software
Deployment

§Begin optimizing for speed and agility

§ Incremental changes
§Beginning of TDD, timeboxing, stories, pair-programming, etc.

§We begin thinking about and measuring the effectiveness of

our SDLC

Live

COPYRIGHT ©2019 MANICODE SECURITY 23

Part 3: Invasion of the Robots

COPYRIGHT ©2019 MANICODE SECURITY

Continuous Integration and Delivery

24

Idea

Development

Development

Continuous
Integration

Continuous
Delivery

§Optimizes for speed and agility. Assuming the cost of a
mistake is low and tolerance for risk is high

§ Parallel and incremental changes
§ Automation and upfront work makes this possible
§ Self-testing code and early days of automated QA

Live

COPYRIGHT ©2019 MANICODE SECURITY 25

Part 4: The Current State of Affairs

COPYRIGHT ©2019 MANICODE SECURITY

DevSecOps

26

Idea

Development

Development

Continuous
Integration

Continuous
Deployment

§Cultural shift towards end-to-end ownership of code

§Zero-downtime, automated deployments

§Emergence of containers, serverless, and zero-downtime
deployments

§ ”Everything-as-Code” is the new standard

§Security is no longer a blocker or silo

Microservices

Automated Security Awesomeness

Dev + Ops Collaboration

COPYRIGHT ©2019 MANICODE SECURITY

DevSecOps Advantages

27

Add customer value

Puts security in everyone’s job description

Eliminate “black box” security teams and tools

Ability to measure security effectiveness

Reduce attack surface and vulnerabilities

Increase recovery speed

Save $$$

Secure by default mentality

COPYRIGHT ©2019 MANICODE SECURITY 28

The Rest is History…

COPYRIGHT ©2019 MANICODE SECURITY

Introduction to DevOps

29

COPYRIGHT ©2019 MANICODE SECURITY

What is DevOps?

30

COPYRIGHT ©2019 MANICODE SECURITY

DevOps Anti-Patterns

31

Have the Ops team deal with it.

Time to fire the Ops team!

Let’s hire a DevOps unit!

COPYRIGHT ©2019 MANICODE SECURITY

Anti-Pattern: “Throw it Over the Wall”

32

Development Operations

COPYRIGHT ©2019 MANICODE SECURITY

Anti-Pattern: “DevOps Team Silo”

33

Development OperationsDevOps

COPYRIGHT ©2019 MANICODE SECURITY

Anti-Pattern: “NoOps” Approach

34

Development Operations

Dev
Ops

COPYRIGHT ©2019 MANICODE SECURITY

Anti-Pattern: “Ops Will Handle it”

35

Development Operations

Dev
Ops

COPYRIGHT ©2019 MANICODE SECURITY

Anti-Pattern: “Ops Will Handle it”

36

COPYRIGHT ©2019 MANICODE SECURITY

Development and Operations Collaboration

37

Development Operations

COPYRIGHT ©2019 MANICODE SECURITY

Dev and Ops Fully Shared Responsibilities

38

Development Operations

COPYRIGHT ©2019 MANICODE SECURITY

DevOps-as-a-Service

39

Development Operations DevOps

COPYRIGHT ©2019 MANICODE SECURITY 40

Collaboration Across Teams

Cross-Training

Support Business Agility

Breaking Down Silos

Automation of Repetitive Tasks

“Everything” as Code

Test, Measure, and Monitor

People

Tools

Process

COPYRIGHT ©2019 MANICODE SECURITY 41

We want to turn this…

COPYRIGHT ©2019 MANICODE SECURITY 42

Into this!

COPYRIGHT ©2018 MANICODE SECURITY 43

“DevSecOps is the process of incorporating
and enforcing meaningful security controls
without slowing down deployment velocity.”

COPYRIGHT ©2019 MANICODE SECURITY

Enabling DevSecOps Through People

44

COPYRIGHT ©2019 MANICODE SECURITY 45

Break Down the Silos

COPYRIGHT ©2019 MANICODE SECURITY 46

Build a Team Beyond Yourself

COPYRIGHT ©2019 MANICODE SECURITY 47

Be Approachable

COPYRIGHT ©2019 MANICODE SECURITY 48

Train Others

COPYRIGHT ©2019 MANICODE SECURITY 49

Radical Transparency

COPYRIGHT ©2019 MANICODE SECURITY

Communication and Collaboration

50

§Critical piece to the DevOps puzzle

§A culture of trust and empowerment

makes for a healthy workplace

§Move towards shipping software faster

and more confidently

§Embrace cross-team communication

and training

§Feedback available from each step of

the pipeline

§Security is a great fit in modern

DevOps cultures

COPYRIGHT ©2019 MANICODE SECURITY 51

Case Study: The ”Two Pizza” Team

COPYRIGHT ©2019 MANICODE SECURITY

Enabling DevSecOps Through Process

52

COPYRIGHT ©2019 MANICODE SECURITY 53

DevSecOps Pipelines

COPYRIGHT ©2019 MANICODE SECURITY

DevOps Processes

54

§Automate building the dev and production environment
§Automate software testing (including security)
§Automate deploying software and services
§Automate monitoring and alerting
§Tune your tools to become more automated and hands-
off

§Build the pipeline slowly and don’t fear failure!
§Be careful with sensitive areas which are difficult to
automate (access control, biz logic, complex actions)

COPYRIGHT ©2019 MANICODE SECURITY 55

COPYRIGHT ©2018 MANICODE SECURITY

Key Goals of DevSecOps Pipelines

§ Optimize the critical resource: Security personnel
§ Automate things that don’t require a human brain
§ Drive up consistency
§ Increase tracking of work status
§ Increase flow through the system
§ Increase visibility and metrics
§ Reduce any dev team friction with application security

COPYRIGHT ©2019 MANICODE SECURITY

Pipeline Security

57

Code Committed

Continuous

Integration

Repository

Peer review

Automated test suite

Build

Automation

Continuous

Deployment

Infrastructure QA Testing

(performance, load, etc.)

Configuration management,

artifact creation, db

migrations, etc.

Production

IaaS, PaaS,

On-Prem, etc.

Post-deploy

checks

Monitoring

and alerting

COPYRIGHT ©2019 MANICODE SECURITY

Development (Pre-Commit)

58

§Developer laptops are the first line of
defense in a DevSecOps pipeline

§Moving security to the left prevents
costly mistakes and vulnerabilities later

§Required Git pre-commit hooks can
offer a simple, effective feedback loop
–Static analysis scans in the IDE
–Peer review from security engineers
–Lightweight, threat modeling in

sensitive areas

Code Committed

COPYRIGHT ©2019 MANICODE SECURITY

Git-Secrets

59

https://github.com/awslabs/git-secrets

COPYRIGHT ©2019 MANICODE SECURITY

Brakeman Static Scanning (Git Pre-Commit Hook)

60

COPYRIGHT ©2019 MANICODE SECURITY

Continuous Integration (Commit Stage)

61

Repository

Peer review

Automated test suite

§Basic automated testing is performed
after a commit is made

§Must be quick and offer instant
feedback

§Key place to include security checks
that run in parallel with integration
tests, unit tests, etc.
– Identify risk in third-party components
– Incremental static security scanning
– Alerting on changes to high-risk areas
– Digital signatures for binaries

COPYRIGHT ©2019 MANICODE SECURITY

Continuous Integration (Commit Stage)

62

§CI server may include a dedicated
security worker

§Third-party dependency checking
performed in CI
–OWASP Dependency Check
–Node Security Project
–Bundler-Audit
–SRC:CLR

§Custom alerts set on repositories and
sent to “on-call” security teams
– Is someone changing pw hashing algorithm?
– Is a new password policy enabled?

COPYRIGHT ©2019 MANICODE SECURITY

Continuous Deployment (Acceptance)

63

Build

Automation

Infrastructure QA Testing

(performance, load, etc.)

Configuration management,

artifact creation, db

migrations, etc.

§Triggered by successful commit and

passing build

§Utilize parallel, out-of-band processes

for heavyweight security tasks

§ IaaS and Config Management should

provision latest, known-good

environment state (as close to

production as possible)

§Security checks during acceptance:

– Comprehensive fuzzing

– Dynamic Scanning (DAST)

– Deep static analysis

–Manual security testing

COPYRIGHT ©2019 MANICODE SECURITY 64

§Zap Baseline scan incorporated into CI
stage of the deployment pipeline

§Runs a basic scan scan from a simple
Docker run command

§By default will output all results of
passive scan rules

§Highly configurable but still struggles in
certain areas

https://github.com/zaproxy/community-scripts/tree/master/api/mass-baseline

Continuous Deployment (Acceptance)

COPYRIGHT ©2019 MANICODE SECURITY

Production (Post-Deployment)

65

§After all security checks have passed
and deployment is complete

§Security teams job does not stop here:
–Monitoring and Alerting
–Runtime Defense (RASP)
–Red Teaming
–Bug Bounties
–External Assessments
–Web Application Firewalls
–Vulnerability Management

IaaS, PaaS,
On-Prem, etc.

Post-deploy
checks

COPYRIGHT ©2019 MANICODE SECURITY

Enabling DevSecOps Through Technology

66

COPYRIGHT ©2019 MANICODE SECURITY

Where are we going?

67

Infrastructure as a Service

Secrets Storage

Logging and Monitoring

Containers and Microservices

COPYRIGHT ©2019 MANICODE SECURITY

Infrastructure-as-a-Service (IaaS)

68

§Delivery of a complete computing foundation

§Servers (virtualized, physical, or “serverless”)

§Network

§Storage

§ Infrastructure is exposed to operators using a service

§Programming network and infrastructure through

APIs vs. buying and building physical hardware

§Can be operated by a third-party, hosted in-house

(K8s), or a hybrid model

COPYRIGHT ©2019 MANICODE SECURITY

Infrastructure-as-a-Service

69

Managed by Ops

IaaS Provider

Amazon EC2
Auto Scaling Amazon

DynamoDB

Physical VM Hosts

Network Hardware

COPYRIGHT ©2019 MANICODE SECURITY

IaaS Security Considerations

70

§ “The Cloud” doesn’t do security for you – this is your
responsibility

§Network and Data Security
§Auditing Capabilities
§Compliance Requirements

– SOC, PCI, HIPAA, etc.

§Encryption Capabilities
§Third-Party Certificates and Audits
§Secrets Storage, Built-in Security Features, etc.

COPYRIGHT ©2019 MANICODE SECURITY

The Cloud Won’t Protect You

71

COPYRIGHT ©2019 MANICODE SECURITY

Distributing Secrets

72

§Software systems often need access to a shared
credential to operate:
– Database password

– Third-Party API key
– Microservices

§Secret management is full of opinions and could be a
course itself

§Many options exist – Choose your own adventure!

COPYRIGHT ©2019 MANICODE SECURITY

Commandments of Sane Secret Management

73

§Secrets should not be written to disk in
cleartext

§Secrets should not be transmitted in cleartext
§Access to secrets should be recorded
§Operator access to secrets should be limited
§Access control to secrets should be granular
§Secrets distribution infrastructure should be
mutually authenticated

§Secrets should be version-controlled

COPYRIGHT ©2019 MANICODE SECURITY

HashiCorp’s Vault

74

COPYRIGHT ©2019 MANICODE SECURITY 75

Which is the most secure way to pass secrets to an app
running in a container?

1. Pass secrets as an environment variable

2. Mount volume in container that has secrets in a file

3. Build the secrets into the container image

4. Query a ”Secrets API” over your network

5. Other

COPYRIGHT ©2019 MANICODE SECURITY

Logging, Monitoring, and Alerting

76

§ Logs are a part of daily life in the DevOps world
§ In security, we focus on particular logs to detect security

anomalies and for forensic capabilities
§ A basic logging pipeline can be shared between Developers,

Operations, and Security teams:
– Log Aggregation: Used to ingest logs from systems,

applications, network components, etc.
– Long Term Storage: Filesystem which retains logs for an

extended period of time. Good for forensics or breach
investigation.
– Short Term Storage: Filesystem or DB which stores logs to

be queried quickly and easily.
– Alerting: Anomaly detection system which is responsible for

sending alerts to teams when a deviation occurs

COPYRIGHT ©2019 MANICODE SECURITY

Logging and Monitoring Pipeline

77

IaaS

Log
Aggregation

Long Term
Storage

Short Term
Storage

Anomaly

Alerting System

Query Interface

DevSecOps

COPYRIGHT ©2019 MANICODE SECURITY

Infrastructure as Code

78

COPYRIGHT ©2019 MANICODE SECURITY

Building Infrastructure

79

§Is your infrastructure…

§Self documenting?

§Version controlled?

§Capable of continuous delivery?

§Integration tested?

§Immutable?

Remember: ”It’s all software"

COPYRIGHT ©2019 MANICODE SECURITY

Immutable Infrastructure

80

“Immutable infrastructure is compromised of components which are
replaced during deployment rather than being updated in place”

COPYRIGHT ©2019 MANICODE SECURITY

Security and Immutable Infrastructure

81

§An immutable infrastructure starts with a
“Golden Image” in a version catalog

§Security teams have a central location to
validate images as compliant and enforce OS
hardening policies

§No more guesswork what is installed
Automation can flag security anomalies vs.
human intervention

§Tags help teams wrangle infrastructure

“Push Security to the Left”

COPYRIGHT ©2019 MANICODE SECURITY

Simple Immutable Infrastructure

82

Base OS

Version Catalog

Packages

Base Container

Latest Code

Base
Image

0.2

Base
Image

0.2

Base
Image

0.2

Base
Image

0.2

Instance 1

Instance 2

Instance n

COPYRIGHT ©2019 MANICODE SECURITY

Proving Immutability

83

Base OS

Version Catalog

Packages

Base Container

Latest Code

Base
Image

0.2

Base
Image

0.2

Base
Image

0.2

Base
Image

0.2

Instance 1

Instance 2

Instance n

SHA1(Base_Image)

96c5…07e4bb

96c5…07e4bb

96c5…07e4bb

COPYRIGHT ©2019 MANICODE SECURITY

Shellshock?

84

Base OS

Version Catalog

Packages

Base Container

Latest Code

Base
Image

0.2

Base
Image

0.2

Base
Image

0.2

Base
Image

0.2

Instance 1

Instance 2

Instance n

COPYRIGHT ©2019 MANICODE SECURITY

Shellshock?

85

Base OS

Version Catalog

Packages

Base Container

Latest Code

Base
Image

0.3

Base
Image

0.3

Base
Image

0.3

Base
Image

0.3

Instance 1

Instance 2

Instance n

Emergency
Patch!

COPYRIGHT ©2019 MANICODE SECURITY

Cattle, not pets.

86

COPYRIGHT ©2019 MANICODE SECURITY

Security Wins

87

§Security team now has insight into the entire
system

§Infrastructure is auditable and version
controlled, just like source code

§Patching can be applied programmatically with
a high level of certainty

§Alerting can be built for changes to specific
areas of the infrastructure
– A new firewall rule is created or deleted

– Administrative user is created

– New VPC rolled out

§Testing can occur much earlier in the pipeline

COPYRIGHT ©2019 MANICODE SECURITY

Infrastructure as Code - Terraform

88

COPYRIGHT ©2019 MANICODE SECURITY

Infrastructure as Code – K8s

89

COPYRIGHT ©2019 MANICODE SECURITY

”Chaos” Testing

90

COPYRIGHT ©2019 MANICODE SECURITY

Brief Introduction to Containers

91

COPYRIGHT ©2019 MANICODE SECURITY

Containers, Containers, Containers, Containers…

92

COPYRIGHT ©2019 MANICODE SECURITY

Software Deployment is Changing

93

Process Security

Process Isolation

§Massive shift toward cloud computing
§ Increased demand for application and infrastructure
portability across environments

§Avoid vendor “lock in” when possible
§ Increase in microservices AKA loosely coupled services

COPYRIGHT ©2019 MANICODE SECURITY

Modern Applications

94

Process Security

Process Isolation

§Breaking monolithic applications into smaller services
offers several advantages:
- Scale independently
- Stateless
- High Availability
- API-Driven
- Faster iteration times

COPYRIGHT ©2019 MANICODE SECURITY

Issues with Modern Applications

95

Process Security

Process Isolation

§Organizations often operate in an Ops vs. Dev vs. Sec
world

§Applications and microservices are written in a variety of
languages and frameworks

§Applications need to run on different technology stacks:

–Virtual Machines

–Windows Server

–Bare Metal Servers

–Cloud Environments

–On-Prem Environments

–Developer Laptops

COPYRIGHT ©2019 MANICODE SECURITY

Physical
HostOperating System

Physical Server

Application

COPYRIGHT ©2019 MANICODE SECURITY

Operating System

Physical Server

Application

§One application per server
§Slow deployment times
§Low resource utilization
§Scaling challenges
§Migration challenges
§$$$
§Difficult to replicate locally

COPYRIGHT ©2019 MANICODE SECURITY

VM
Physical Server

Hypervisor

Host Operating System

VM

Guest
OS

App

VM

Guest
OS

App

VM

Guest
OS

App

COPYRIGHT ©2019 MANICODE SECURITY

Physical Server

Hypervisor

Host Operating System

VM

Guest
OS

App

VM

Guest
OS

App

VM

Guest
OS

App

§One physical server and
multiple applications

§Each application runs in a
Virtual Machine

§Better resource utilization
§Easier to scale
§VMs live in the Cloud
§Still requires complete
guest Operating Systems

§Application portability not
guaranteed

COPYRIGHT ©2019 MANICODE SECURITY

Container

Physical Server

Docker (CRI)

Host Operating System

Container

Bins
Libs

App 3

Container

Bins
Libs

App 2

Container

Bins
Libs

App 1

COPYRIGHT ©2019 MANICODE SECURITY

Physical Server

Docker (Container Runtime)

Host Operating System

Container

Bins
Libs

App 3

Container

Bins
Libs

App 2

Container

Bins
Libs

App 1

§Containers are an
application layer construct

§VMs allow us to convert
one physical machine into
many servers

§No Operating System to
boot (fast!)

§Most portable out of all
options

§Less OS overhead using
shared kernel model

COPYRIGHT ©2019 MANICODE SECURITY

Containers
and VMs

are Happy
Together

Physical Server

Hypervisor

Host Operating System

VM 1
Container

App 1

Docker

Bins/Libs

VM 2
Container

App 2

Docker

Bins/Libs

VM 3
Container

App 3

Docker

Bins/Libs

Jimmy Mesta Secure Coding Instructor www.manicode.com

It's been a pleasure.
jmesta@manicode.com

