Common API Breaches
and how to avoid them

ISABELLEMAUNY - Field CTO

yisamauny

Agenda

* Intro to Security vocabulary and principles

 OWASP API Security Top10
« Data Validation
* Authentication
* Authorization
* Rate Limiting
* Architecture and Tools

* General Recommendations

Why is API Security so hot right now?

* 400+ breaches reported on apisecurity.io since Oct.
2018

* And those are just the public ones!

* Recurring Combination of:

* Lack of Input validation

* Lack of Rate Limiting o

 Data/Exception leakage IBM report finds two-thirds of cloud breaches traced to
misconfigured APlIs

@ EY DUNCAN RILEY

A new report from IBM Security X-Force has found that two-thirds of cloud breaches can be
traced to misconfigured application programming interfaces.

Authorization issues

Authentication issues

pemam

https://siliconangle.com/2021/09/16/ibm-report-finds-two-thirds-cloud-breaches-traced-misconfigured-apis

®S

http://apisecurity.io
https://siliconangle.com/2021/09/16/ibm-report-finds-two-thirds-cloud-breaches-traced-misconfigured-apis

Everyone is a target!

facebook P payPal T

Facebook - 50 million users’ personal PayPal - 1.6 million customers at risk T-Mobile - 76 million users’ phone
information was exposed of data exposure numbers and addresses stolen

@ Uber Justdial

Instagram - 49 million users’ emails Uber - 57 million riders and drivers Justdial - Over 100 million Indian
and phone numbers exposed accounts were compromised users’ personal data at risk

EQUIFAX verizon’

Equifax - 147 million users personal Starbucks - 100 million customer Verizon - 14 million subscribers phone
data stolen records accessed numbers and PINs exposed

Security Goals Overview

INTEGRITY Message has not been tampered with
CONFIDENTIALITY Message can only be seen by target audience
AVAILABILITY Resistance to attacks, such as Denial-of-service (DOS)
AUTHENTICATION Identity of the caller is known.

We can guarantee the caller has proper permissions to access a
resource

AUTHORIZATION

System has non-perishable trace of all machine/human
iteractions.

AUDIT

NON-REPUDIATION There is (legal) proof that the action has taken place.

SECURITY
PRINCIPLES

API Security is risk based

1 Threat Model
™ Data Classification
M Actors |dentification

You can’t protect what you don’t know!

M API Catalog
M AP| Governance
M API| Security Status

No Trust

THE GUIDING PRINCIPLE!

ways question who/what is going to access the API
ways gquestion anything you reuse/adopt (anything from StackOverflow, libs, code)
Wways question any data you receive

> > > >

so applies to internal traffic (especially in a service mesh)
 Apply Defense in Depth

“Treat APIs like they have a direct interface into your
underlying systems and can bypass security controls —
because that is pretty much what they do,” said Peter
Liebert, former CISO, state of California

https://www.linkedin.com/in/peter-liebert/
https://www.linkedin.com/in/peter-liebert/

GUIDING
FRAMEWORK

OWASP API Security Top 10

oken Object Level Access Control
* API2 : Broken Authentication
* API3 : Excessive Data Exposure

* API4 : Lack of Resources & Rate Limiting CHEAT SHEET

* API5 : Missing Function Level Access Control OWASP

* API6 : Mass Assignment API Security Top 10
* API7 : Security Misconfiguration

* API8 : Injection oo

* API9 : Improper Assets Management

* API10 : Insufficient Logging & Monitoring

B Data Protection | Auth/ Authorization . Governance/Operations

®S

https://apisecurity.io/encyclopedia/content/owasp/owasp-api-security-top-10-cheat-sheet.htm

DATA
PROTECTION

Excessive Data Exposure (API 3)

Looking forward to generic implementations, developers tend to expose all
object properties without considering their individual sensitivity, relying on
clients to perform the data filtering before displaying it to the user.

dtinder P Grindr
AP ‘\‘\5‘% Ycrusi venmo

JrizikaL Uber

®S

Grindr (Sept 2020)

https://www.troyhunt.com/hacking-grindr-accounts-with-copy-and-paste/

* The Attack

* Full account takeover for any Grindr account from an email address via password reset

« The Breach

* Unknown. Company thinks they fixed the issue before anyone could find it.

e (Core lssues

* On password reset, the APl leaks the actual reset token which is sent to the user via email (and of course,
only the user should know...)

https://appsecure.security/blog/how-i-could-have-hacked-your-uber-account

QR code expired

C‘ Refresh sﬁﬂt!

Check your email for a link to reset your password.
If you don't see the email, verify you have entered

your email address correctly and check your spam
, J or folder.

How To Log In To Grindr Web Back to login

On your phone, open Grindr
Go to your Profile Drawer and select Grindr Web

Scan the code with your phone

Confirm your login with the in-app pop up dialog

D t (w ﬂ Elements Console Sources Network Performance Memory Application » 0 37 a : X
a a ® © V¥V Q | @ rreservelog B Disable cache @ Online v | 4 ¥ o

Filter __J Hide data URLs m XHR JS CSS Img Media Font Doc WS Manifest Other [J Has blocked cookies

__| Blocked Requests

Name X Headers Preview Response Initiator Timing Cookies

. reset-password?request=true 1 {"resetToken":"Isg6z13q5fZsyAnAB80CdAnRgBSIYFpKkCOB04pP1lWLNepwuClUgX24ImrLc6bb7T7DWSY!

4 »

2 requests 256 B transferred 1. Line 1, Column 1

https://neo-account.grindr.com/v3/user/password/reset?
resetToken=Isg6z13g5fZ2syAnABSOCANRgBSIYfpKkCOOO4pP1lWLNOpwuClUgX24ImrLcobb /T7DWSyFMGS51REHQmMS4
CsFR5Uh8GEYQOxF6Z6V5hsi3vSTullXzgKRRItwdDI jmSWdg&email=test@scotthelme.co.uk

Mass Assignment (API 6)

Binding client provided data (e.g., JSON) to data models, without proper
POST/api/my_info properties filtering based on an allowlist, usually leads to Mass Assignment.
._ ::g:g;gg::g—;;:::l s Either guessing objects properties, exploring other API endpoints, reading the

Vv

. W@ documentation, or providing additional object properties in request payloads,
allows attackers to modify object properties they are not supposed to.

‘ ‘

v Y Gator Uber

~-The start of lite's adventures

Harbor Registry

®S

https://hackerone.com/reports/267781
https://hackerone.com/reports/99424

GatorWatches (Sept 2019)

https://www.pentestpartners.com/security-blog/gps-watch-issues-again/

* The Attack

* Become admin of the Gator platform

* The Breach

* Admin can see the location of any child wearing the smartwatch

e (Core lssues

* Anyone can set their User[Grade] to 0 , which automatically elevates privileges to admin.

https://appsecure.security/blog/how-i-could-have-hacked-your-uber-account
https://www.pentestpartners.com/security-blog/gps-watch-issues-again/

Becoming
Admin

Request

M Params THeaders T Hex]

POST request to /web/index.php

Type ' Name Value

URL r secured/user/profile

Cookie _csrf e432ab101109a4936950ca7329145a5fed44cdfe3ad373b1c8f4804a755ca8e1s:32:"FFg-dXUtzk. ..
Cookie PHPSESSID dduvq)68eukb6b930jasqlogmud

Body csif ~ N09fc2szcHdxCTheD2sIA00kGDAF djs6fR80BiN/NIpofidJPIZDPA==
Body 76837ekg-18b5-11e9-ad9c-0a6fcad8bfB0

Body T SA0BE-7168-43D3-8A41-C502FC3F4DCF

Body User[NickName] egw2

Body User[Bossld] 05CD69A2-4DC0-42EB-8351-401983D1

Body User[XzAddress]

Body User[LinkMan]

Body User[Contact]

Body User[Fax]

Body User[Email]

Body User[dateformat] yyyy-MM-dd

Body User[datetimeformat] yyyy-MM-dd HH:mm:ss

Injection (API 8)

........ Pl Injection flaws, such as SQL, NoSQL, Command Injection, etc., occur when
o untrusted data is sent to an interpreter as part of a command or query. The
ros | \ ' attacker’s malicious data can trick the interpreter into executing unintended
commands or accessing data without proper authorization.

legit_property a : “foo”
legit_property a : “bar;

Kiwi

https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/894325
https://hackerone.com/reports/592400

STARBUCKS (Nov 2019)

https://hackerone.com/reports/592400

* The Attack
« Blind SQLi leading to RCE (Remote Command Execution)

* The Breach

* None - This was a bug bounty

e (Core lssues

* SQL Injection allowed to get access to backend production database and execute shell commands on the
database server.

https://appsecure.security/blog/how-i-could-have-hacked-your-uber-account

And of course...

The primary cause of Log4Shell, formally known as CVE-2021-44228, is what NIST calls improper

input validation.

Loosely speaking, this means that you place too much trust in untrusted data that arrives from
outsiders, and open up your software to sneaky tricks based on booby-trapped data.

If you've ever programmed in C, you'll almost certainly have bumped into this sort of problem when

using the printf() function (format string and print).

Normally, you use it something like this:
int printf(const char *format, ...);

int count;
char *name;

IYWUT B W N =

/* print them out somewhat safely */

2e= mmma a - l

https://nakedsecurity.sophos.com/2021/12/13/log4shell-explained-how-it-works-why-you-need-to-know-and-how-to-fix-it

https://nakedsecurity.sophos.com/2021/12/13/log4shell-explained-how-it-works-why-you-need-to-know-and-how-to-fix-it

Input Data Validation

* No Trust (even for internal APIs and for East-West traffic)
* Validation can happen client side, but it must happen server-side!

* Do not blindly update data from input structure

* Apply caution when using frameworks that map directly database records to JSON objects

* Do not use the same data structures for GET and POST/PUT
* Validate Inputs

* Only accept information specified in JSON schema (contract-based, whitelist approach) - Reject all others.

* Also validate Headers

* How to test

 Send bad verbs, bad data, bad formats, out of bounds, etc.

®S

Output Data Validation

* Never rely on client apps to filter data : instead, create various APIs depending on
consumer, with just the data they need

* Take control of your JSON schemas!

* Describe the data thoroughly and enforce the format at runtime

* Review and approve data returned by APIs
* Never expose tokens/sensitive/exploitable data in APl responses
* Properly design error messages - Make sure they are not too verbose!

* Beware of GraphQL queries!

* Validate fields accessed via query

®S

https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html

JWTs transport data too!

EnCOded PASTE A TOKEN HERE DeCOded EDIT THE PAYLOAD AND SECRET

- Can leak data

- Can be prone to injections
(example: kid sql injection)

Recommended best practice:

* Use opaque tokens for external
consumption

* Use JWTs for internal
consumption

eyJhbGci0iJIUzITNiIsInR5cCI6IkpXVCJ9.ey
J1c2VyIjp7I19pZCI60DUsImVtYW1lsIjoiY3Vzd
G9tZXJAcGl4aS5jb20iLCIwYXNzd29yZCI6Imhl
bGxvcGl4aSIsImShbWUi0iJjb3NBZXhwbGFuYXR
pb24il CJwaWMiOiJodHRwczovL3MzLmFtYXpvbm
F3cy5jb20vdWlmYWN1cy9mYWNlcy98d2108dGVyL
3NoYWS1SXhELzEyOC5qcGecilLCJhY2NvdWS58X2Jh
bGFuY2UiOjEwWMDAsIm1zX2FkbW1luIjpmYWxzZSw
1YWxsX3BpY3R1cmVzIjpbXX0sImlhdCI6MTYwMz
IXxNjIwOX0.DjgTBCev5Kq_DpvBwfKva3K3rLCs4
ro9hN17S-hhé6qMI

HEADER: ALGORITHM & TOKEN TYPE

{
"alg": "HS256",
Il_typﬂ : IIJWTII

}

PAYLOAD: DATA

{

"user": {

"_id": 85,

"email": "customer@pixi.com",

"password”: "hellopixi",

“name": "costexplanation”,

"pic":
"https://s3.amazonaws.com/uifaces/faces/twitter/shanelx
D/128.jpg",

"account_balance": 1008,
"is_admin": false,
"all_pictures": []

}
"iat": 1603216209

VERIFY SIGNATURE

HMACSHA256 (
base64UrlEncode(header) + "." +
base64UrlEncode(payload),
your-256-bit-secret

) (0 secret base64 encoded

https://blog.pentesteracademy.com/hacking-jwt-tokens-kid-claim-misuse-command-injection-e7f5b9def146

AUTHORIZATION

Broken Object Level Access Control (API 1)

GET/accounts/id1/financial_info

APIs tend to expose endpoints that handle object identifiers, creating a wide
u}

attack surface Level Access Control issue. Object level authorization checks
\

- ou - - .

Uber Y Google Cloud

Online Registration System S O N | CWA L L

@ Ministry of Electronics & Information Technology

°;. Goverment of India

https://hackerone.com/reports/267781
https://hackerone.com/reports/99424

UBER (SEPT 2019)

https://appsecure.security/blog/how-i-could-have-hacked-your-uber-account

* The Attack

* Account takeover for any Uber account from a phone number

* The Breach

* None. This was a bug bounty.

e (Core lssues

« Data leakage 1: driver internal UUID exposed through error message!

“status”:”failure”,
“data™: {
“code”:1009,

“message”:”Driver ‘47d963f8-0xx5e-xxxxx-b@la-xxxx’ not found”

}

* Hacker can access any driver, user, partner profile if they know the UUID

« Data Leakage 2: Full account information is returned, when only a few fields are used by the Ul. This includes
the mobile token used to login onto the account

®S

https://appsecure.security/blog/how-i-could-have-hacked-your-uber-account

Addressing BOLA Issues

* Fine-grained authorisation in every controller layer

« Additionally:
« Avoid guessable IDs (123, 124, 125...)
 Avoid exposing internal IDs via the API

« Alternative: GET https://myvapis.com/phone/me

* OAuth scopes are not the solution here, as they limit access to an operation and not to a
resource.

* Mitigate potential data scrapping by putting rate limiting in place

* Test this use case (see testing framework from Yelp)

* Great reference: https://inonst.medium.com/a-deep-dive-on-the-most-critical-api-vulnerability-

bola-1342224ec3f2

®S

https://myapis.com/phone/me
https://github.com/Yelp/fuzz-lightyear
https://inonst.medium.com/a-deep-dive-on-the-most-critical-api-vulnerability-bola-1342224ec3f2
https://inonst.medium.com/a-deep-dive-on-the-most-critical-api-vulnerability-bola-1342224ec3f2
https://inonst.medium.com/a-deep-dive-on-the-most-critical-api-vulnerability-bola-1342224ec3f2

AUTHENTICATION

Broken Authentication (API 2)

Lyt

!

Authentication mechanisms are often implemented incorrectly, allowing
attackers to compromise authentication tokens or to exploit implementation
flaws to assume other user’s identities temporarily or permanently.
Compromising system'’s ability to identify the client/user, compromises API
security overall.

facebook V."¢ AuthO SIEMENS

AuthO (April 2020)

https://insomniasec.com/blog/authO-jwt-validation-bypass

* The Attack

* Authentication Bypass

« The Breach

* None. Discovered as part of pen-testing.

e (Core lssues

* The Authentication API prevented the use of alg: none with a case sensitive filter. This means that simply
capitalising any letter e.g. alg: nonE, allowed tokens to be forged.

https://insomniasec.com/blog/auth0-jwt-validation-bypass

Addressing Broken Authentication

* No un-authenticated endpoints!
* Define authentication based on risk.
* Use short-lived access tokens and limit their scope

* Use correct OAuth grant_types (most likely authorization_code with PKCE)
» Use the Financial Grade security profiles as reference (https://openid.net/wg/fapi/)

* Make sure you validate JWTs according to Best Practices (RFC 8725) - https://www.rfc-editor.org/rfc/
rfc8725.txt

* Use secure storage for credentials
* Watch for tokens in code repos (for example Github Secret Scanning).

 Test authentication resilience with all kind of combinations!

®S

https://portswigger.net/web-security/oauth
https://openid.net/wg/fapi/
https://www.rfc-editor.org/rfc/rfc8725.txt
https://www.rfc-editor.org/rfc/rfc8725.txt
https://www.rfc-editor.org/rfc/rfc8725.txt
https://www.rfc-editor.org/rfc/rfc8725.txt

RATE LIMITING

Rate/Resources Limiting (API 4)

Quite often, APIs do not impose any restrictions on the size or number of
resources that can be requested by the client/user. Not only can this impact the
API server performance, leading to Denial of Service (DoS), but also leaves the
door open to authentication flaws such as brute force.

O Q ZO0OMm

facebook

https://hotforsecurity.bitdefender.com/blog/how-any-instagram-account-could-be-hacked-in-less-than-10-minutes-21409.html
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/

Facebook (Feb 2018)

https://appsecure.security/blog/we-figured-out-a-way-to-hack-any-of-facebook-s-2-billion-accounts-and-they-paid-us-a-15-000-bounty-for-it

* The Attack

* Account takeover via password reset at https://www.facebook.com/login/identify?ctx=recover&wv=110.

« facebook.com has rate limiting, beta.facebook.com does not!

* The Breach

* None. This was a bug bounty.

e (Core Issues

* Rate limiting missing on beta APIs, which allows brute force guessing on password reset code

* Misconfigured security on beta endpoints

https://www.facebook.com/login/identify?ctx=recover&lwv=110
http://facebook.com
http://beta.facebook.com

Rate Limiting Recommendations

* Protect all authentication endpoints from abuse (login, password reset, OAuth endpoints)
* Smart rate limiting : by APl Key/access token/user identity/fingerprint

* Short timespan

* Bad example: Instagram, 200 attempts/min/IP for password reset

* The list of all potential 6 digits combinations take seconds to generate....

“In a real attack scenario, the attacker needs 5000 IPs to hack an account. It sounds big but that’s actually easy if

you use a cloud service provider like Amazon or Google. It would cost around 150 dollars to perform the complete

attack of one million codes”

https://thezerohack.com/hack-any-instagram
https://www.grc.com/haystack.htm

No Authentication
+ No Rate Limiting :
Lethal Combination

LOGGING

Secure Logging

« Goals:
* Forensics
* Non-repudiation
» Keep event logs for anything unusual

* Rejected requests (auth issues, authorization issues, data validation, application errors).

« Critical information needs to be logged at the lowest logging level (i.e. not the debug level)

* Need to record: what happened, when, who was the caller, where (app/api details, machine
name, pod name, etc.)

* Recommendations:
» Log early - Adding logs once code is written is a nightmare...

* Invest in a shared framework / custom library that everyone uses and which implements those best practices -
will make logging easier and coherent

®S

Secure Logging

. Careful with the data we log:
- No Pl
. No tokens/API Keys
- No Encryption keys

- Anything sensitive for your business

.- Sensitive data can be:
- Masked (same format/different data)
. Hashed : very useful for tokens/IPs for traceability

« Encrypted
.- Logs file may need to be sighed for non-repudiation purposes

More at : https://cheatsheetseries.owasp.org/cheatsheets/l ogging Cheat _Sheet.html

®S

https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html

Tokens/Keys passed as query param!

* Anything in query param end logs in a log somewhere
* ..Then pushed to a central log manager...
* ..Now it's visible in dashboards!

* Always use headers to pass sensitive information (or body in a POST)

More at: https://www.fullcontact.com/blog/2016/04/29/never-put-secrets-urls-query-
parameters/

https://www.fullcontact.com/blog/2016/04/29/never-put-secrets-urls-query-parameters/
https://www.fullcontact.com/blog/2016/04/29/never-put-secrets-urls-query-parameters/
https://www.fullcontact.com/blog/2016/04/29/never-put-secrets-urls-query-parameters/

CALL TO ACTION! THE RELATIVE COST OF FIXING A FLAW

AT DIFFERENT STAGES OF THE SDLC 30x

Use APl Top 10 as framework for design and testing

15x

Start worrying about API Security at design time 10x

Sx
v Avulnerability discovered at production time costs up to 30x more to solve 1x - .

Hack yourselves leveraging APl contracts

Requirements / Coding Integration / System / Production /
Architecture Component Acceptance Post-Release

v For each functional test, create 10 negative tests oo eeting

SOURCE: 1%

v Hammer your APIs with bad data, bad tokens, bad users

: “I think security, in most cases, is not a single
Automate security person’s specialization. Security must be a practice

. TR - : : f every member of the team from the frontend
7 Inject Security into DevOps practices and don't rely on manual testing of APIs. | ¢ -

: y P> P y 5 developer to the system administrator (also non tech
v Only solution to scale and have avoid human errors roles).”

From: Gitlab DevSecOps report - 2021

https://www.helpnetsecurity.com/2020/05/20/devops-software-development-teams/

https://www.helpnetsecurity.com/2020/05/20/devops-software-development-teams/
https://learn.gitlab.com/c/2021-devsecops-report?x=u5RjB_

References

* apisecurity.io

* Input Validation

* https.//cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

* Defense in-depth

* http://searchsecurity.techtarget.com/definition/defense-in-depth

 OWASP REST Security Cheat Sheet
* https://www.owasp.org/index.php/REST_Security_Cheat_Sheet

* Transport Layer Security Cheat Sheet
* https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet
* https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

* HTMLS Security Cheat Sheet

* https://www.owasp.org/index.php/HTML5_Security Cheat_Sheet#lLocal_Storage

®S

http://apisecurity.io
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet#Local_Storage

