
Eradicate Vulnerability Classes
With Secure Defaults & Lightweight Enforcement

1

Adam Berman | r2c.dev

Slides are posted at http://bit.ly/2021Berman-OWASP-Denver

https://r2c.dev/
http://bit.ly/2021Berman-OWASP-Denver

me:
Adam Berman, lead engineer @ r2c
Formerly: eng lead for Meraki’s analytics
product, Georgia Tech

whois?

2

r2c:
We’re an SF based
static analysis startup
on a mission to
profoundly improve
software security and
reliability.

1. Why Bug-Finding Isn't The Answer

2. How to Eradicate Vulnerability Classes

3. Tools & Techniques To Make It Real

3

Outline

4

Massive Shifts in Tech and Security

Before After

Waterfall development Agile development

Dev, Ops DevOps

On prem Cloud

5

Massive Shifts in Tech and Security

Before After

Waterfall development Agile development

Dev, Ops DevOps

On prem Cloud

Finding vulnerabilities Secure defaults

Quiz: Does this app have XSS?

Icons by Icons8 6

https://icons8.com

Context?
● HTML
● HTML attribute
● JavaScript
● ...

Quiz: Does this app have XSS?

Input filtered?

Data processed
before sent to
user?

How is it stored?
(field types,
constraints)

DB type?

What does user control?
Structure of data?

Icons by Icons8 7

https://icons8.com

Context?
● HTML
● HTML attribute
● JavaScript
● ...

Quiz: Does this app have XSS?

Input filtered?

Data processed
before sent to
user?

How is it stored?
(field types,
constraints)

DB type?

What does user control?
Structure of data?

Icons by Icons8

Guardrail: Frontend is React, banned dangerouslySetInnerHTML

8

https://icons8.com

Context?
● HTML
● HTML attribute
● JavaScript
● ...

Quiz: Does this app have XSS?

Input filtered?

Data processed
before sent to
user?

How is it stored?
(field types,
constraints)

DB type?

What does user control?
Structure of data?

Icons by Icons8

Guardrail: Frontend is React, banned dangerouslySetInnerHTML

9

https://icons8.com

Finding Bugs Only using the “safe” way

● This app could have been incredibly complex, with millions of LOC
● With some strong secure defaults, we significantly reduced its risk
● We did this without fancy tools:

○ DAST that can handle single page apps, GraphQL, modern frontends...
○ SAST tracking attacker input flowing across dozens of files
○ Fuzzing
○ Symbolic execution
○ Formal methods (“proving” correctness)

Let’s Solve the “Easy” Version of the Problem

11

Write proof of
concept exploit

Task vs Effort Required
Ef

fo
rt

 R
eq

ui
re

d
(a

hu
)

Task

Detect use of
(in)secure
library

Find potential
bug

Confirm it’s a
real bug

12

Detecting (lack of) use of
secure defaults

is much easier than

finding bugs

13

Compounding Effects of Killing Bug Classes

14

Your Internal Dialogue?

● “All you’ve shown me is some hand-wavy
diagrams”

● The security industry has focused on bug
finding for decades

○ SAST, DAST, pen tests, bug bounty

15

We Come Bearing Gifts: Enabling Prod Security w/ Culture & Cloud
 AppSec Cali ‘18, Patrick Thomas, Astha Singhal

16

https://www.youtube.com/watch?v=L1WaMzN4dhY&feature=youtu.be&t=1855
https://twitter.com/coffeetocode/
https://twitter.com/astha_singhal/

A Pragmatic Approach for Internal Security Partnerships
AppSec Cali ‘19, Scott Behrens, Esha Kanekar

17

https://tldrsec.com/blog/appsec-cali-2019/#a-pragmatic-approach-for-internal-security-partnerships
https://twitter.com/HelloArbit
https://www.linkedin.com/in/eshakanekar/

"We invest heavily in building
frameworks that help engineers
prevent and remove entire classes
of bugs when writing code."

Facebook:

Designing Security For Billions by Facebook

18

https://about.fb.com/news/2019/01/designing-security-for-billions/

How Valuable Can Banning Functions Be?

41% of vulnerability
reduction from XP → Vista
from banning strcpy and
friends

Analysis of 63 buffer-related security bugs that affect
Windows XP, Windows Server 2003 or Windows 2000 but
not Windows Vista: 82% removed through SDL process

● 27 (43%) found through use of SAL (Annotations)
● 26 (41%) removed through banned API removal

"Security Improvements in Windows Vista", Michael Howard

19

https://www.acsac.org/2007/workshop/Howard.pdf

● “It’s unreasonable to expect any
developer to be an expert in all these
subjects, or to constantly maintain
vigilance when writing or reviewing code.

● A better approach is to handle security
and reliability in common frameworks,
languages, and libraries. Ideally, libraries
only expose an interface that makes
writing code with common classes of
security vulnerabilities impossible.”

Google:

Building Secure and Reliable Systems, by Google
20

https://landing.google.com/sre/resources/foundationsandprinciples/srs-book/

Framework / tech choices matter

● Mitigate classes of vulnerabilities

Examples:

● Using modern web frameworks
● DOMPurify - output encoding
● re2 - regexes
● tink - crypto

“But I’m not Google”

21

Web security before
 modern frameworks

https://github.com/cure53/DOMPurify
https://github.com/google/re2
https://github.com/google/tink

1. Why Bug-Finding Isn't The Answer

2. How to Eradicate Vulnerability Classes

3. Tools & Techniques To Make It Real

22

Outline

1. Select a vulnerability class
2. Determine the right approach to find/fix it at scale
3. Select a safe pattern and make it the default
4. Train developers to use the safe pattern
5. Use tools to enforce the safe pattern

How to Eradicate Vulnerability Classes

23

Common selection criteria

Bug classes that are:

1. The most prevalent
2. The highest impact / risk
3. Easiest to tackle (organizationally, technically)
4. Organizational priorities
5. Weighted: f(prevalent, severe, feasible, org)

1. Evaluate which vulnerability class to focus on

24

Vulnerability Management (more)

Know your current state and if your future efforts actually work

Track: Severity, vulnerability class, source code responsible, …

1. Evaluate which vulnerability class to focus on

25

https://docs.google.com/presentation/d/1lfEvXtw5RTj3JmXwSQDXy8or87_BHrFbo1ZtQQlHbq0/edit#slide=id.g7c8a58b51e_0_563

Vulnerability Management (more)

Know your current state and if your future efforts actually work

Track: Severity, vulnerability class, source code responsible, …

Build a List of Prior Vulnerabilities to Review

From: Issue trackers, commit history, tool or pen test reports, ...

1. Evaluate which vulnerability class to focus on

26

https://docs.google.com/presentation/d/1lfEvXtw5RTj3JmXwSQDXy8or87_BHrFbo1ZtQQlHbq0/edit#slide=id.g7c8a58b51e_0_563

Vulnerability Management (more)

Know your current state and if your future efforts actually work

Track: Severity, vulnerability class, source code responsible, …

Build a List of Prior Vulnerabilities to Review

From: Issue trackers, commit history, tool or pen test reports, ...

Review Prior Vulns for Trends

Within a bug class: Do the vulnerable code look similar?

1. Evaluate which vulnerability class to focus on

27

https://docs.google.com/presentation/d/1lfEvXtw5RTj3JmXwSQDXy8or87_BHrFbo1ZtQQlHbq0/edit#slide=id.g7c8a58b51e_0_563

Common selection criteria

Bug classes that are:

1. The most prevalent
2. The highest impact / risk
3. Easiest to tackle (organizationally, technically)
4. Organizational priorities
5. Weighted: f(prevalent, severe, feasible, org)

1. Evaluate which vulnerability class to focus on

28

Ideal World
Choose a vulnerability class that is:
● Widespread across teams/repos
● High Risk
● Feasible to get devs to fix
● Aligns with company priorities
● Always broken in the same way

Different weaknesses require different approaches
2. How to Find/Fix at Scale?

29

Big picture, architectural flaws

Cloud misconfigurations

Complex business logic bugs

Protect vulns until they’re patched

Known good/known bad code

Threat Modeling

IaaC scanning, Cartography, BB

Pen tests, bug bounty

WAF, RASP

Lightweight static analysis

● Based on internal coding guidelines, standards, your expertise, ...

3. Select a Safe Pattern and Make it the Default

30

3. Select a Safe Pattern and Make it the Default
Update all internal coding guidelines (security & dev)
● READMEs, developer documentation, wiki pages, FAQs

Work with developer productivity team
● Secure version should have an even better dev UX than the old way

○ How can we increase dev productivity and security?
● Integrate security at the right points (e.g. new project starter templates) to get automatic,

widespread adoption
● “Hitch your security wagon to dev productivity.” - Astha Singhal

31

https://tldrsec.com/blog/appsec-cali-2019-lessons-learned-from-the-devsecops-trenches/#favorite-quotes

Making Communications Successful

● What and why something is insecure should be clear
○ Use terms developers understand, no security jargon

● Convey impact in terms devs care about
○ Risk to the business, damaging user trust, reliability, up time

● How to fix it should be concise and clear
○ Link to additional docs and resources with more info

4. Help Developers Use the Safe Pattern

32

Use lightweight static analysis (grep, linting) to ensure the safe patterns are used

5. Use Tools to Enforce the Safe Pattern

33

1. Why Bug-Finding Isn't The Answer

2. How to Eradicate Vulnerability Classes

3. Tools & Techniques To Make It Real

34

Outline

How to Eradicate Vulnerability Classes

35

1. Evaluate which vulnerability class to focus on
2. Determine the best approach to find/prevent it at scale

→ How to set up continuous code scanning

3. Select a safe pattern and make it the default
4. Train developers to use the safe pattern
5. Use tools to enforce the safe pattern

→ Checking for escape hatches in secure frameworks

AppSec USA:

Put Your Robots to Work: Security Automation at Twitter | ‘12

Providence: rapid vuln prevention (blog, code) | '15

Cleaning Your Applications’ Dirty Laundry with Scumblr (code) | '16

Scaling Security Assessment at the Speed of DevOps | '16

SCORE Bot: Shift Left, at Scale! | ‘18

Continuous Scanning: Related Work

36

https://m.youtube.com/watch?v=Ivc5Sj0nj2c
http://slides
https://engineering.salesforce.com/announcing-providence-rapid-vulnerability-prevention-3505ffd17e17
https://github.com/salesforce/Providence
https://m.youtube.com/watch?v=XItlPMcUL38
https://github.com/Netflix-Skunkworks/Scumblr
https://www.youtube.com/watch?v=hEHCB7iWUzk&index=24&list=PLpr-xdpM8wG8DPozMmcbwBjFn15RtC75N
https://tldrsec.com/blog/score-bot-shift-left-at-scale/

Salus: How Coinbase Sales Security Automation (blog, code)
 DevSecCon London ’18

Orchestrating Security Tools with AWS Step Functions (slides)
DeepSec '18

A Case Study of our Journey in Continuous Security (code)
DevSecCon London ‘19

Dracon- Knative Security Pipelines (code)
Global AppSec Amsterdam ‘19

Continuous Scanning: Related Work

37

https://m.youtube.com/watch?v=z_byZPlXzKM
https://blog.coinbase.com/introducing-salus-how-coinbase-scales-security-automation-1ba5e8074937
https://github.com/coinbase/salus
https://www.youtube.com/watch?v=TGBTrshyE9Y&list=PLLWzQe8KOh5kiARJe_i-im28No_mt_b_z&index=46
https://www.deepsec.net/docs/Slides/2018/Orchestrating_Security_Tooling_With_AWS_Step_Functions_Jules_Denardou_Justin_Massey.pdf
https://www.devseccon.com/london-2019/
https://github.com/dowjones/reapsaw/
https://github.com/thought-machine/dracon/blob/master/docs/presentations/Dracon-OWASP-Presentation-export.pdf
https://github.com/thought-machine/dracon

Continuous Scanning: Best Practices

Two Scanning Workflows
audit (sec team, visibility), blocking (devs, pls fix)

Scan Fast (<5min)
feedback while context is fresh
can do longer / more in depth scans daily or weekly

Scan Pull Requests
every commit is too noisy, e.g. WIP commits

Make Adjustment Easy
Make it cheap to add/remove tools and new rules

38

Continuous Scanning: Best Practices
Clear, actionable, with link
to more info

Show tool findings within dev systems
(e.g. on PR as a comment)

Track & evict low signal checks:
keep only +95% true positives
Otherwise causes ill will with devs + too much security team
operational cost

Capture metrics about check types,
scan runtime, and false positive rates

(Screenshot from Google's, Tricorder: Building a Program Analysis Ecosystem)

39

https://research.google/pubs/pub43322/

Don't come in last!
Security checks should not be the slowest check blocking developer from merging

Continuous Scanning: Scan Fast

40

Report violations as early
as possible, ideally in the
editor.

Also enforce in CI so that it
can't be ignored.

Continuous Scanning: Keep context fresh

41

If we use secure frameworks that maintain secure
defaults, all we need to do is detect the functions that
let you "escape" from those secure defaults. For
instance:

● dangerouslySetInnerHTML
● exec
● rawSQL(...)
● myorg.make_superuser

Continuously Finding: Escape Hatches

42

● Grep

○ Pro: easy to use, interactive, fast
○ Con: line-oriented, mismatch with program structure (ASTs)

● Code-Aware Linter

○ Pro: robust, precise (handles whitespace, comments, …)
○ Con: Each parser represents ASTs differently; have to learn each syntax

● Anything else?

How to find them?

43

https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree

What we do

44

● Open source

● Supports many languages

● >1000 out of the box rules

● Does not require buildable source code

● 🔥 No painful DSL, patterns look like the code you’re targeting

45

Semgrep.dev

https://semgrep.dev/

1. Select a vulnerability class
2. Select a safe pattern and make it the default
3. Train developers to use the safe pattern
4. Use tools to enforce the safe pattern

How to Eradicate Vulnerability Classes

46

1. Select a vulnerability class

● r2c is young
○ Two (2) primary codebases
○ Limited vulnerability history

● Prioritize based on common problems for the type of application:
○ Web application → XSS
○ Command line interface → Code and Command injection

47

2. Select a safe pattern and make it the default

48

49

https://semgrep.dev/explore

https://semgrep.dev/docs/cheat-sheets/django-xss/

Making Secure Defaults Easier

50

https://semgrep.dev/explore
https://semgrep.dev/docs/cheat-sheets/django-xss/

3. Train developers to use the safe pattern

51

Make security fixes fast and easy.
Even an imperfect suggestion is better than nothing!

Autofix

52

4. Use tools to enforce the safe pattern

53

54

BONUS: Quietly monitor new policies

55

● Secure defaults are the best way to scalably raise your security bar
○ Not finding bugs (bug whack-a-mole)

● Killing bug classes makes your AppSec team more leveraged
● Define safe pattern → educate / roll out → enforce continuously

○ Fast & lightweight (e.g. semgrep), focus on dev UX

Conclusion

Adam Berman

Slides: http://bit.ly/2021Berman-OWASP-Denver

56

https://github.com/returntocorp/semgrep
http://bit.ly/2021Berman-OWASP-Denver

1. Why Bug-Finding Isn't The Answer

2. How to Eradicate Vulnerability Classes

3. Tools & Techniques To Make It Real

4. Community Collaboration

57

Outline

● Partnership between Semgrep + OWASP ASVS, Cheat Sheets
● Goal: Out of the box support for:

○ Verifying if your code is compliant with ASVS Level 1

○ Finding code that violates Cheat Sheets best practice recommendations

Want to get involved? Let’s talk! 🙌
Thanks to Daniel Cuthbert, Joe Bollen, Rohit Salecha, and more

Partnering with OWASP

58

https://owasp.org/www-project-application-security-verification-standard/
https://cheatsheetseries.owasp.org/
https://join.slack.com/t/r2c-community/shared_invite/enQtNjU0NDYzMjAwODY4LWE3NTg1MGNhYTAwMzk5ZGRhMjQ2MzVhNGJiZjI1ZWQ0NjQ2YWI4ZGY3OGViMGJjNzA4ODQ3MjEzOWExNjZlNTA
https://twitter.com/dcuthbert
https://twitter.com/HazanaSec
https://twitter.com/salecharohit

59

Why Semgrep is 😍 for AppSec Engineers & Developers
Coding Standards ➡ Enforce Continuously

60

https://instagram-engineering.com/static-analysis-at-scale-an-instagram-story-8f498ab71a0c

Semgrep

https://instagram-engineering.com/static-analysis-at-scale-an-instagram-story-8f498ab71a0c

● Speed matters - scan in minutes, not hours/days
● False Negatives > False Positives
● Ease of use is key

○ Huge value in org-specific and code base specific checks
○ Heavily prioritize first time user experience, “average” users
○ Accessible to developers, not just security professionals

● Enforcing secure defaults > bug finding (more)

61

Our Worldview

https://r2c.dev/blog/2020/future-of-appsec-why-r2c/

Given:
● Speed matters
● False Negatives > False Positives
● Ease of use is key
● Enforcing secure defaults > bug finding

Semgrep:
● Focuses on single file / localized analysis

○ Interprocedural data flow analysis is slow/imprecise
○ Almost always sufficient for enforcing secure defaults
○ Doesn’t require buildable source, fast

● Has rules that look like source code (can’t express everything)
62

Design Decisions

Fortify, Checkmarx CodeQL Semgrep

Open source rules ❌ ✅ ✅
Open source engine ❌ ❌ ✅
Freely test on closed
source repos ❌ ❌ ✅
Open source SaaS
app ❌ ❌ ❌

Popular SAST Vendors

63

● Grep

○ Pro: easy to use, interactive, fast
○ Con: line-oriented, mismatch with program structure (ASTs)

● Code-Aware Linter

○ Pro: robust, precise (handles whitespace, comments, …)
○ Con: Each parser represents ASTs differently; have to learn each syntax

● Semgrep

○ Pro: Handles languages with “more than one way to do it”
○ Pro: Single tool for multiple languages, simple pattern language
○ Con: Slower than grep, not all languages supported

How to find them?

64

https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree

Try it: https://semgrep.dev/ievans:python-exec

Finding exec
$ semgrep -e 'exec(...)' -lang py exec.py

65

https://semgrep.dev/ievans:python-exec

Try it: https://semgrep.live/clintgibler:java-runtime-exec-try
Solution: https://semgrep.live/clintgibler:java-runtime-exec

Secure defaults + types
$ semgrep -e '(Runtime $X).exec(...);' -lang java test.java

66

https://semgrep.live/clintgibler:java-runtime-exec-try
https://semgrep.live/clintgibler:java-runtime-exec

"call verify_transaction() before "make_transaction()"

Try it: https://semgrep.dev/ievans:make-transaction-try
Solution: https://semgrep.dev/ievans:make-transaction

Beyond OWASP Top 10: Business Logic

67

https://semgrep.dev/ievans:make-transaction-try
https://semgrep.dev/ievans:make-transaction

Tell me as soon as possible
(ideally in editor)

IDE Integration

68

Make security fixes fast and easy.
Even an imperfect suggestion is better than nothing!

Autofix

69

Quiz: Does this app have RCE?

Icons by Icons8 70

https://icons8.com

Does the app?
● Deserialize data
● Run shell commands
● Mix data and code

○ eval(), exec()
○ Metaprogramming

Quiz: Does this app have RCE?

Input filtered? How is it stored?
(field types,
constraints)

What does user control?
Structure of data?

Icons by Icons8 71

https://icons8.com

Does the app?
● Deserialize data
● Run shell commands
● Mix data and code

○ eval(), exec()
○ Metaprogramming

Quiz: Does this app have RCE?

Input filtered? How is it stored?
(field types,
constraints)

What does user control?
Structure of data?

Icons by Icons8

Ban: exec(), eval(), shell exec, deserialization (objects, YAML, XML, JSON)

72

https://icons8.com

Does the app?
● Deserialize data
● Run shell commands
● Mix data and code

○ eval(), exec()
○ Metaprogramming

Quiz: Does this app have RCE?

Input filtered? How is it stored?
(field types,
constraints)

What does user control?
Structure of data?

Icons by Icons8

Ban: exec(), eval(), shell exec, deserialization (objects, YAML, XML, JSON)

73

https://icons8.com

“If this is such a good idea, why aren’t you rich isn’t everyone
doing it already?”

1. What secure defaults should I use?
2. Rolling out requires org-wide buy-in
3. Enforcing secure defaults

Secure Defaults: Challenges in Practice

74

“If this is such a good idea, why aren’t you rich isn’t everyone
doing it already?”

1. What secure defaults should I use? Docs
2. Rolling out requires org-wide buy-in
3. Enforcing secure defaults

Secure Defaults: Challenges in Practice

75

● Onboarding
● Coding standards
● Code quality

https://semgrep.dev/docs/

