OWASP Top 10 2017/

David Johansson
Principal Consultant, Synopsys

Presentation material contributed by Andrew van der Stock

Open Web Application
ttttttttttttttttt

(7)OWASP

Open Web Application
Security Project

David Johansson

Security consultant with 10 years in
AppSec

Helping clients design and build secure
software

Develop and deliver security training

Based in London, working for Synopsys

(@securitybits)

\YILLRYAY

owaseop 10kt | ROad to release

OWARSP

Open Web Application
Security Project

¥

WECANTSTOPHERE, ™
THISIS BAT COUNTRY

ICANHASCHEEZEURGER.COM 35 2 o

Criticism — valid and invalid

* “Not OWASP like”

* The new additions A7 Insufficient Attack Protection and A10
Underprotected APIs boiled down to “failure to buy a tool”

* From a vendor who sets the standard
* From a vendor who owns the tool type market

| "‘/ ' * John Steven and others had ontological issues with the mix of
i g A both controls and vulnerabilities (“Define vulnerability. Is that a
JLETS NOT 'LIIQ!}TIIIS INTOA vulnerability?”)
MEMEWAR | Others had problems with the data quality

e Showed us people really care about the OWASP Top 10!

The community called

for change!

AppSec USA 2017 Keynote by Jim Manico and John Steven

Leadership

| HAD TO DISPLAY
lEAnEBSHlp 0"0[* Dave Wichers and Jeff Williams stood down

. * Handed it over to Andrew van der Stock

* Immediately appointed co-leaders
* Neil Smithline (participated since 2004)
* Torsten Gigler (German translator since 2010)
* And the team added ... Brian Glas (data geek)

ITUNASTERRIBLE

BORTE < <o

Data Call

THE DATA SIIGGES'I'S_.._

* Need data for 2016

* Need qualitative survey data for two replacements for A7 and A10

* Brian Glas designed the new survey

* 500+ responses

e Obtained a great deal more data, including from HPE (Fortify),
Veracode, CheckMarx, BugCrowd, and Synopsys. Over 114,000 apps
form data set.

<> . -
‘e =z
imgflip.com ’ -

OWARSP

Open LUeb RApplication

Incidence Rate vs. CWE

Security Misconfiguration (CWE-2,1
Cross-Site Scripting (XSS) (CWE-79)
Cryptographic (CWEs-310/326/32
Information Leakage/Disclosure (C
XML eXlem.’I Ent '-,' Injection (XXE)

SQL Injection (CWE-89
Unchecked Redirect (CWE-601
Path Traversal (CWE-22)

28.09%

|ﬁ"’_ 89)

Authentication (CWE-287) 5.71%
Data Ca” Cleartext Transmission of Sensitive 5.05%
Session Fixation (CWE-384) 491%
S umma r‘y Command Injection (CWE-77,78) 4.84%
Use of Known Vuln Ubraries lhEu 451%
insufficient Anti-automation (CWE-. 341%
Improper (Function Level) Access C 2.64%
Erro rmﬂﬂlﬂgl('*' 8 2.64%

Cross-Site Request Forgery (CSRF) 2.18%
Missing Authorization (CWE-285) 2.10%
Clickjacking Vulnerabilities Found 1.80%
Denial of C:HC&tDOQ] |‘C..‘t 400) 1.57%
Server-Side F\%’L}..%&I Forgery (SSRF) 1.20%
Unvalidated Forward (No CWE) 1.28%
DOM-Based XSS (Na CWE) 0.89%
insecurs Direct Object Reference (C 0.88%
Mass Assignment (CWE-915) |l 0.85%

Cleartext Storaae of Sensitive Infor 0.82%
Unrestricted Upic ad of Flle with Da 0.74%
Hibernate Injection (CWE-564 0.64%

incuffiriant Samirnite | nnninn (CWE. N A0

(7)OWASP

Open Web Application

Ordering

 We ordered in risk (impact x

Andrew van der Stock @ @vanderaj - Se .)
!) The @QOWASPTop10 has data that sugge likelihood), which means CVSS x
(survey | data)

would order works best for you? Pls RT ¢

* Represents our best understanding
9% Same order as now of 2017 issues

20% Impact (severity) order
15% Data (likelihood) order

56% Risk impact x likelihood

210 votes * Final results

GitHub

* Everything is in GitHub

* Open: Moved to GitHub
* Open: Data and analysis
* Traceable: Issues

* Translatable: Markdown

Branch: master v

Top10 /2017 /

OWARSP

Open Web Application
Security Project

‘l vanderaj Merge pull request #411 from SPoint42/feature/transiation-fr-Oxad40-xxe

W archive
B datacall
W drafts

M en

i fr

M he

W images
 ja

M ko

M templates

B translations

Move GM release to archive

Most recent analysis for Golden Master

OWASP Top 10 2017 Golden Master

resorted the CWEs

Inital translation to french

now edit in MD

Top 10 - 2017 list image

Merge branch 'master' of https://github.com/okdt/Top1
Korean Translation for Top10 - 2017 (#404)

Trying to fix PDF generation

Create README.TRANSLATIONS

wharsnew | QVWASP Top 10 2017

OWASP
OWASP Top 10 2013 > 2017 @Dowsas

A1 - Injection A1:2017-Injection
A2 - Broken Authentication and Session Management A2:2017-Broken Authentication
A3 - Cross-Site Scripting (XSS) A3:2017-Sensitive Data Exposure

A4 - Insecure Direct Object References [Merged+A7] em—— A4:2017-XML External Entities (XXE) [NEW]

zczww‘w‘

A5 - Security Misconfiguration A5:2017-Broken Access Control [Merged]

A6 - Sensitive Data Exposure A6:2017-Security Misconfiguration

A7 - Missing Function Level Access Contr [Merged+A4] e— A7:2017-Cross-Site Scripting (XSS)

X C N

A8 - Cross-Site Request Forgery (CSRF) A8:2017-Insecure Deserialization [NEW, Community]

A9 - Using Components with Known Vulnerabilities A9:2017-Using Components with Known Vulnerabilities

[x]

A10 - Unvalidated Redirects and Forwards A10:2017-Insufficient Logging&Monitoring [NEW,Comm.]

Insecure Deserialization

E B EEEEEEDN Security .lllllllllll
Weakness

App. Specific |Exploitability: 1 Detectability: 2 Technical: 3

This issue is included in the Top 10 based on an The impact of deserialization flaws
iIndustry survey and not on quantifiable data. cannot be understated. These flaws
can lead to remote code execution
attacks, one of the most serious
attacks possible.

ssnnnnnl@ Impacts

Threat Attack
Agents %. L Vectors

Business ?

Exploitation of deserialization is
somewhat difficult, as off the shelf
exploits rarely work without changes
or tweaks to the underlying exploit
code.

Some tools can discover deserialization flaws, but
human assistance is frequently needed to validate
the problem. It is expected that prevalence data for
deserialization flaws will increase as tooling is
developed to help identify and address it.

The business impact depends on the
protection needs of the application
and data.

Is the Application Vulnerable? How to Prevent
Applications and APIs will be vulnerable if they deserialize hostile = The only safe architectural pattern is not to accept serialized
or tampered objects supplied by an attacker. objects from untrusted sources or to use serialization mediums

This can result in two primary types of attacks: that only permit primitive data types.

Is the Application Vulnerable?

Applications and APIs will be vulnerable if they deserialize hostile
or tampered objects supplied by an attacker.

This can result in two primary types of attacks:

- Object and data structure related attacks where the attacker
modifies application logic or achieves arbitrary remote code
execution if there are classes available to the application that
can change behavior during or after deserialization.

- Typical data tampering attacks, such as access-control-related
attacks, where existing data structures are used but the content
is changed.

Serialization may be used in applications for:

 Remote- and inter-process communication (RPC/IPC)
- Wire protocols, web services, message brokers

« Caching/Persistence

- Databases, cache servers, file systems

« HTTP cookies, HTML form parameters, APl authentication
tokens

Example Attack Scenarios
Scenario #1: A React application calls a set of Spring Boot

How to Prevent

The only safe architectural pattern is not to accept serialized
objects from untrusted sources or to use serialization mediums
that only permit primitive data types.

If that is not possible, consider one of more of the following:

« Implementing integrity checks such as digital signatures on any
serialized objects to prevent hostile object creation or data
tampering.

« Enforcing strict type constraints during deserialization before
object creation as the code typically expects a definable set of
classes. Bypasses to this technique have been demonstrated,
so reliance solely on this is not advisable.

« Isolating and running code that deserializes in low privilege
environments when possible.

» Logging deserialization exceptions and failures, such as where
the incoming type is not the expected type, or the
deserialization throws exceptions.

» Restricting or monitoring incoming and outgoing network
connectivity from containers or servers that deserialize.

« Monitoring deserialization, alerting if a user deserializes
constantly.

References
OWASP

« Caching/Persistence
- Databases, cache servers, file systems

« HTTP cookies, HTML form parameters, AP| authentication
tokens

Example Attack Scenarios

Scenario #1: A React application calls a set of Spring Boot
microservices. Being functional programmers, they tried to
ensure that their code is immutable. The solution they came up
with is serializing user state and passing it back and forth with
each request. An attacker notices the "R00" Java object
signature, and uses the Java Serial Killer tool to gain remote
code execution on the application server.

Scenario #2: A PHP forum uses PHP object serialization to save
a "super" cookie, containing the user's user ID, role, password
hash, and other state:

a:4:{i:0;i:132;i:1;s:7:"Mallory";i:2;s:4:"user";
i:3;5:32:"b6a8b3bea87fe0e05022f8f3c88bc960";}
An attacker changes the serialized object to give themselves
admin privileges:
a:4:{i:0;i:1;i:1;s:5:"Alice™;i:2;s:5:"admin";
i:3;5:32:"b6a8b3bea87fe0e05022f8f3c88bc960";}

- I—UHHIIIH Tl S e N I el 0 i Sl B U UﬂUUHLIUIIJ et B T TRATTRAT A mad e Bl Bl] Bl W1 1 I

the incoming type is not the expected type, or the
deserialization throws exceptions.

» Restricting or monitoring incoming and outgoing network
connectivity from containers or servers that deserialize.

« Monitoring deserialization, alerting if a user deserializes
constantly.

References

OWASP

+ OWASP Cheat Sheet: Deserialization

+ OWASP Proactive Controls: Validate All Inputs

+ OWASP Application Security Verification Standard

+ OWASP AppSecEU 2016: Surviving the Java Deserialization
Apocalypse

« OWASP AppSecUSA 2017: Friday the 13th JSON Attacks

External
+ CWE-502: Deserialization of Untrusted Data

« Java Unmarshaller Security
+ OWASP AppSec Cali 2015: Marshalling Pickles

Al1:2017 Injections

(7)OWASP

Open Web Application
Security Project

SQL injection

NoSQL injection

OS Command Injection
LDAP Injection

<insert injection here>

°

OWARSP

NIST 800-63 Alignment Open Web Appication
Two factor authentication
Anti-automation

Credential Stuffing

Brute forcing and dictionary attacks

A2:2017 Insecure e — ~ -
Authentication e

R

* & N hepldacatat

1454 -
1A 9N 127608 BIYY AN g % wihe SO00K] Bedery vy
TAM08 12000 81450 an e (N MG FTOON L WA
1AM v (R abest ACOre T i Tk i ca
labes oz Ve abear UCOr eIt e et oary
It mis s ae S Vior e®eat JOCOre W e bwriarph ooty va
12919 BLYS A
st el
Vit eisse w S vlocahoan JOOrat L mrercars
s misse o oot J000noctw: L0« Jhtremp
LIN0E BN AN Sy ot sl NCOree Sl oy i Trrses 2y
LAMLE L
LAME R P Ak sf owt A0y bet &1 B0« M seeg -
: >
10000 R1657 4M i v f b S0P R A tagm
L1809 51707 28 g W2 00w RSLD st P
LAe0E K103 A
Asia eid o m
A6 RLT 00
1215019 B17 07 av
Ieie &) P o7
Aslanldoe VTR AR AR L OO St L et Cary
3 LOBLE 81700 a4 Sz docator: J00Made, rod dedoct ks . Z - xx i
Mty A3 GRLEmE QU ML o e

A3:2017 Sensitive Data
Exposure

OWARSP

* Focuses on data breaches Open Web Application

Security Project

» Sensitive, private, health, financial data

* Aligned with GDPR and privacy laws

A4:2017 XXE

*)owAspP

° N EW FOR 2017] Open Web Application

Security Project

* One of the most under-tested issues

e ... but only new issue that had sufficient data

* Learn, test, report, fix!

@ OucATimePlayer Fla S50 Yiew Wockw lep

A5:2017 Broken Access
Control

(7)) OWASP
Insecure Direct Object Open Web Application

Security Project
Reference (IDOR)
Force browsing
Presentation layer access control

Controller (“function”) layer access control

Model layer access control
Domain access control — business logic

@ OucATimeFlager Fla S50 Vew Wockw ep 3 a N TP Al R LM Q8=

A6:2017 Security
Misconfiguration

7t)OWASP
S3 buckets, MongoDB, etc. Open Web Application

Security Project

Directory listings

All the passive findings

Risk rate as per the sensitivity!

L)

A7:2017 XSS

<

* Now with extra focus on DOM XSS
e Reflected XSS
e Stored XSS

 All your old favorites!

OWARSP

Open Web Application
Security Project

A&:2017 Insecure
deserialization

(7)OWASP

Open Web Application
Security Project

* New for 2017 (Community)

e Deserialization discovered — and this section
written - by Chris Frohoff and Gabe
Lawrence (!!)

* Learn, Test, Report, Fix!

| NextGen B2B API® =

Wew b mrOare (SO SateT AN HOr O eOORTIOWE COBTETE. LSRR RcA S Drewiii ity 0Fered

OWASP

° |t'S St|” here! gpen_LUeb Application
ecurity Project
e Automatically report with ClI/CD dependency
checkers
 Warn if outdated, break if vulnerable

Let’s see if we can retire this in 3 years!

AR BUBUNG - T M ads /08 per ency < e (b S Me = Bt Zhiw O
g student@ubuntu:~/Downloads/dependency-check/binS

student@ubuntu;~/Downloads /dependency-check/bin$

student@ubuntu:~/Downloads /dependency-check/binS ./dependency-check.sh -s ~

student@ubuntu:~/Downloads/dependency-check/bin$./dependency-check.sh -s ~
:g/jutce-shop/ --project juice-shop --enableExperimental |}

X

A10:2017 Insufficient
Logging and Monitoring

(7)OWASP

Open Web Application
Security Project

NEW for 2017 (Survey)

Average time to discover pwnage: > 190 days
Usually reported by external third party
Usually costs > S1m and often a lot more

This is a missing or ineffective control.

Testing for this is pretty straight forward — talk
to your operations team or look in your SIEM

Detected?
Would action be taken?

Would escalation have occurred?

Minimize time to detect and respond

(7)OWASP

Open Web Application

Time to upskill and continuously improve =
* OWASP Top 10 2017 is different COME TO THE DARK
SIDE
* Update skills ’a ~, : \"
* Update test plans S
* Update tools . ‘2

Update scan policies

In particular, A3, A8 and A10 are
very different. No tool can
adequately capture all 10 risks

Get ready for 2020

* Get ready for the next release!

* Look at the data we collected
this time around

* It’s 2018 already. Start
automating that data collection!

* Please consider donating your
stats to OWASP!

OWARSP

Up n Web Application
urity Project

(7)OWASP

Open Web Application
Security Project

David Johansson
@securitybits

David.Johansson@synopsys.com

Thank you!

And thanks to Andrew van der Stock who contributed the presentation material.

mailto:vander@synopsys.com

