
• adrian.winckles@owasp.org

OWASP Web Honeypot Project -
Application Honeypot Threat 

Intelligence



Bio	– Adrian	Winckles
• Director of Cyber Security, Networking & Big Data Research Group,
Anglia Ruskin University, Cambridge.

• OWASP Activities
– OWASP Cambridge Chapter Leader,
– OWASP Europe Board Member
– Project Leader – OWASP Web Honeypot Project
– Project Leader – OWASP Application Security Curriculum Project

• Chair Cambridge Cluster of the UK Cyber Security Forum.
• Vice Chair of the BCS Cyber Forensics Special Interest Group.



Introduction	to	Honeypots
• A	computer	system	setup	to	detect	or	lure	attacks.	
• Honeypot	types:	

– Production	(detect)	
– Research	(lure)

• Honeypot	interaction	types:	
– Low	- emulated	services,	limited	to	no	emulated	login	capability	(low	risk).	
– Medium	- emulated	services,	emulated	login,	emulated	commands.	
– High	- Actual	services,	system	logins,	and	commands	(very	risky).	



Introductions	to	Honeypots	(cont’d)
• A	production	honeypot	has	no	legitimate	business	purpose	and	
should	never	see	any	traffic,	unless...	
– Something	is	misconfigured	on	the	network	
– Someone	is	malicious	on	the	network	

Honeypot	logs	are	low	volume	and	high	value	



Why	OWASP	Web	Honeypots	(Part	1)?

• Sector	focus	is	on	HTTP(S)	today
• According	to	CAIDA,	(Center for	Applied	Internet	Data	
Analysis)	web	is	~85%	of	total	internet	traffic.

• 92%	of	vulnerabilities	now	in	the	application	(NIST/Gartner)



Why	Web	
Honeypots?



Why	OWASP	Web	Honeypots	(Part	2)?
• Focus	is	on	HTTP(S)	today
• According	to	CAIDA,	(Center	for	Applied	Internet	Data	Analysis)	
web	is	~85%	of	total	internet	traffic.

• 92%	of	vulnerabilities	now	in	the	application	(NIST/Gartner)
• Web	architecture	is	complicated
• It	also	means	complicated	attacks	are	acceptable
• Attacks	that	will	only	work	on	0.01%	of	users	are	valuable



The	Web	is	Complicated	



Why	OWASP	Web	Honeypots	(Part	3)?
• Focus	is	on	HTTP(S)	Today
• Special	care	needs	to	be	taken	here
• According	to	CAIDA,	(Center	for	Applied	Internet	Data	Analysis)	web	is	~85%	of	total	

internet	traffic
• As	a	result	web	architecture	is	complicated
• It	also	means	complicated	attacks	are	acceptable
• Attacks	that	will	only	work	on	0.01%	of	users	are	valuable
• Diversity	of	attacks	is	high	as	well	(number	of	variations)

– Attacker	on	server	/	Attacker	on	client
– Attacker	on	client	via	server
– Attacker	on	server	via	server
– Attacker	on	intermediary



What	do	we	want	to	capture?	

• Think	about	using	existing	tools	so	that	you	can	catch	automated	
web	attack	tools	that	are	scanning	IP	network	ranges	looking	for	
web	ports.

• Instead	of	developing	and	deploying	an	entirely	new	honeypot	web	
server	or	application,	we	can	easily	reuse	the	existing	legitimate	
web	server	platform’s	organisations are	already	running.



Consider	the	WAF		- Web	Application	Firewall
• WAFs	Come	in	multiple	different	forms



The	WAF	as	a	Honeypot	or	Probe?

• WAFs	Come	in	multiple	different	forms
• Can	be	placed	in	several	places	on	the	network

• Inline
• Out-of-line
• Load	balancer	mirror	port
• On	the	web	server

• Different	Technologies
• Signatures
• Heuristics

• Often	driven	by	PCI	requirements,	as	it’s	an	approved	security	control

• What	is	the	difference	between	an	IDS	versus	WAF?



ModSecurity - An	Open	Source	Web	Application	Firewall

• Probably	the	most	popular	WAF	
– Designed	in	2002
– Currently	on	version	2.9.1	with	version	3.0	in	the	works

• Designed	to	be	open	and	supports	the	OWASP	Core	Rule	Set
– First	developed	in	2009
– An	OWASP	project	meant	to	provide	free	generic	rules	to	
ModSecurity users

– CRS	v3.0	now	deployed	



ModSecurity’s Apache	Request	Cycle	Hooks



< A generic, plug-n-play set of WAF rules
< Choose your mode of operation

4 Standard vs. Anomaly Scoring
< Detection Categories:

4 Protocol Validation
4 Malicious Client Identification
4 Generic Attack Signatures
4 Known Vulnerabilities Signatures
4 Trojan/Backdoor Access
4 Outbound Data Leakage
4 Anti-Virus and DoS utility scripts

What	is	the	OWASP	Core	Rule	Set	(CRS)?



CRS Traditional Detection Mode – Birth of a Honeypot Probe

< IDS/IPS mode with “self-contained” rules
< Like HTTP itself – the rules are stateless

4 No intelligence is shared between rules
4 If a rule triggers, it will execute a disruptive/logging action

< Easier for the new user to understand
< Not optimal from a rules management perspective (handling false 

positives/exceptions)
< Not optimal from a security perspective

4 Not every site has the same risk tolerance
4 Lower severity alerts are largely ignored



Event Logging - Standard vs. Correlated Events

< Standard mode
4 Rules log event data to both the Apache error_log and the ModSecurity

Audit log can be relayed using mlogc http/json
< Correlated mode

4 Basic rules are considered reference events and do not directly log to 
the Apache error_log

4 Correlation rules in the logging phase analyze inbound/outbound 
events and generate special events

4 modsecurity_crs_60_correlation.conf



Modsecurity Log Collector (mlogc) – Event Logging 



Project	Aims	&	Objectives

• The	OWASP	Honeypot	Project	provides:	
– Real-time,	detailed	Web	Application	Attack	Data
– Threat	Reports	to	the	community

• What	do	we	need	
– Volunteers	to	run	honeypots/probes	in	their	network
– Contributor’s	to	the	project	



Target Site WASC Honeypot Sensor

Inbound Attack for Target Site

Project	Architecture
Attacker

1=1/../../
Session ID =UX8serwderakvcx

Script%23%.asp
Hacker.exe123

Payload

ModSecurity Inspects HTTP Payload and 
Identifies it as an Attack

WASC Analyst

Central Logging Host
ModSecurity Management Appliance

Honeypot Sends 200 Status Code

Mlogc json/http log

Normal web 
comms



WASC Honeypot Sensor

WASC Honeypot Sensor

WASC Honeypot Sensor

Attacker

VM Based WAF Probes

Automated 
Web Attacks 
using 
OWASP ZAP

-mlogc
HTTP audit 
log data 

Audit data 
passed to PHP 
script and 
logged to 
MySQL

Project Test Bed
Audit Console 
(Apache 
Webserver)



Distributed Probes Model





Ongoing	&	Future	Work

• Setup	Proof	of	Concept	to	understand	how	Mod	Security	baed Honeypot/Probe	
interacts	with	a	receiving	console	(develop	a	VM	and/or	Docker	based	test	
solution	to	store	logs	from	multiple	probes)	DONE

• Evaluate	console	options	to	visualise threat	data	received	from	ModSecurity
Honeypots/probes	in	ModSecurity Audit	Console,	WAF-FLE,	Fluent	and	bespoke	
scripts	for	single	and	multiple	probes.		Ongoing

• Develop	a	mechanism	to	convert	from	stored	MySQL	to	JSON	format.
• Provide	a	mechanism	to	convert	ModSecurity mlogc audit	log	output	into	JSON	

format.
• Provide	a	mechanism	to	convert	mlogc audit	log	output	directly	into	ELK	

(ElasticSearch/Logstash/Kibana)	to	visualise the	data.	



Ongoing	&	Future	Work	(cont’d)
• Provide	a	mechanism to	forward	honest	output	into	threat	intelligence	format	such	

as	STIX	using	something	like	the	MISP	project	(https://www.misp-project.org)	to	
share	Threat	data	coming	from	the	Honeypots	making	it	easy	to	export/import	
data	from	formats	such	as	STIX	and	TAXII.,	may	require	use	of	concurrent	logs	in	a	
format	that	MISP	can	deal	with.	

• Consider	new	alternatives	for	log	transfer	including	the	use	of	MLOGC-NG	or	other	
possible	approaches.	

• Develop	a	new	VM	based	honeypot/robe	based	on	CRS	v3.0.	
• Develop	new	alternative	small	footprint	honeypot/probe	formats	utilising Docker	

&	Raspberry	Pi.	
• Develop	machine	learning	approach	to	automatically	be	able	to	update	the	rule	

set	being	used	by	the	probe	based	on	cyber	threat	intelligence	received.



Any	Questions?


