,.e

Anglla Ruskin
Unlvers:ty

OWASP Web Honeypot Project -
Application Honeypot Threat
Intelligence

 adrian.winckles@owasp.org

nnnnnnnnnnnnnnnnn
Curlt gggggggg

Bio — Adrian Winckles

Director of Cyber Security, Networking & Big Data Research Group,
Anglia Ruskin University, Cambridge.
OWASP Activities

— OWASP Cambridge Chapter Leader,

— OWASP Europe Board Member

— Project Leader — OWASP Web Honeypot Project

— Project Leader — OWASP Application Security Curriculum Project

Chair Cambridge Cluster of the UK Cyber Security Forum.
Vice Chair of the BCS Cyber Forensics Special Interest Group.

Introduction to Honeypots

* A computer system setup to detect or lure attacks.

* Honeypot types:
— Production (detect)
— Research (lure)

* Honeypot interaction types:

— Low - emulated services, limited to no emulated login capability (low risk).
— Medium - emulated services, emulated login, emulated commands.
— High - Actual services, system logins, and commands (very risky).

Introductions to Honeypots (cont’d)

* A production honeypot has no legitimate business purpose and
should never see any traffic, unless...

— Something is misconfigured on the network
— Someone is malicious on the network

Honeypot logs are low volume and high value

Why OWASP Web Honeypots (Part 1)?

e Sector focusis on HTTP(S) today

e According to CAIDA, (Center for Applied Internet Data
Analysis) web is ¥“85% of total internet traffic.

* 92% of vulnerabilities now in the application (NIST/Gartner)

Why Web
Honeypots?

o4

bits/
0 00000 0A0ON™HMMMEMEFEFEFEFUNNNNNNN
O H NNV NANYNRDVO NG SNV ERTOD NN MY
LB B B B B B BB BB B B BB L

Application
| HTTPS
W HTTP
B LhNOWN_LOP
D unNowN_TCP

I..E..U
A

Application bits/s - (1 hour

—

|

L L 08 a3 L 04 4

March 17 2016 - March 17 2016 POT

Min

830, m 1.
656, 201 750,
116.75M 148,
§2.1M 110,

TEM
=
oM
[)
odm
17k
nmn X

generated 2016.05.22 05: 26 POY

xgwwuub

SFuwaro

Avg

- %

L

Max

822,
176,
165,
10,
11.

19.
LB

. 336G

a6M
™
M
61M

39N
A3M

334
S5

Why OWASP Web Honeypots (Part 2)?

 Web architecture is complicated
* |t also means complicated attacks are acceptable
e Attacks that will only work on 0.01% of users are valuable

The Web is Complicated

Web Mobile Voice Web Semantic Privacy,
Applications Services Web Security

XHTML XHTML Basic Voice XML SOAP OWL P3P
SVG CDF Mobile SVG SRGS MTOM SKOS APPEL
SMIL SMIL Mobile SSML WSDL GRDDL XML Sig
XForms XForms Basic CCXML WS-CDL RDFa XML Enc
CsS XSL CSS Mobile EMMA WS-A POWDER XKMS
WwWICD MWI1 BP RIF

Web Accessibility / Internationalization / Device Independence / Mobile Access / Quality Assurance

Y Y I N

XML, Namespaces, Schemas, XQuery/XPath, XSLT, DOM, XML Base, XPointer, RDF XML, SPARQL
XML Infoset, RDF(S) Graph

Web Architectural Principles

URVIRI,HTTP

Why OWASP Web Honeypots (Part 3)?

* Diversity of attacks is high as well (humber of variations)
— Attacker on server / Attacker on client
— Attacker on client via server
— Attacker on server via server
— Attacker on intermediary

What do we want to capture?

* Think about using existing tools so that you can catch automated
web attack tools that are scanning IP network ranges looking for
web ports.

* Instead of developing and deploying an entirely new honeypot web
server or application, we can easily reuse the existing legitimate
web server platform’s organisations are already running.

Consider the WAF - Web Application Firewall

* WAFs Come in multiple different forms

WEB APPLICATION
SERVER

The WAF as a Honeypot or Probe?

WAFs Come in multiple different forms
Can be placed in several places on the network
* Inline
 OQOut-of-line
* Load balancer mirror port
* Onthe web server
Different Technologies
* Signatures
* Heuristics

Often driven by PCl requirements, as it’s an approved security control

What is the difference between an IDS versus WAF?

ModSecurity - An Open Source Web Application Firewall

A0
* Probably the most popular WAF v3 il
— Designed in 2002
— Currently on version 2.9.1 with version 3.0 in the works == g compidrab s

* Desighed to be open and supports the OWASP Core Rule Set
— First developed in 2009

— An OWASP project meant to provide free generic rules to
ModSecurity users

— CRS v3.0 now deployed

ModSecurity’s Apache Request Cycle Hooks

* ModSecurity Phase:1
- | ——Request Headers
(wait) |—| post-read-request 4

~

URI translation

N\
.

o Header p:tsmg
r 3

access control

-

ModSecurity Phase:5 authentication
Logging J
avthorization
4

logging >

MIME type checking
rd
fi!UpS ModSecurity Phase:2

~ Request Body
~| RESPONSE |«—
ModSecurity Phase:4 D ModSecurity Phase:3

Response Body Response Headers

document

What is the OWASP Core Rule Set (CRS)?

B A generic, plug-n-play set of WAF rules wrwesmwe

odsecurity_40_generic_attacks.data
. odsecurity_41_sqgl_injection_attacks.data
. Choose Our‘ mOde Of O eratlon odsecurity_46_et_sqgl_injection.data
y odsecurity_46_et_web_rules.data
ogsecuPity_S@_mélta:bound-datia 1 ¢
. odsecurity_crs_20_protocol_violations.con
} Standard VS- Anomaly Scorlng odsecurity_crs_21_ protocol_anomalies.conf
odsecurity_crs_23_request_limits.conf
. . odsecurity_crs_30_http_policy.conf
. Detectlon Cate Orlesl odsecurity_crs_35_bhad_robots.conf
g . odsecurity_crs_48_generic_attacks.conf
odsecurity_crs_41_phpids_converter.conf
odsecurity_crs_41_phpids_filters.conf

} PrOtOCOl Valldation odsecurity_crs_41_sqgl_injection_attacks

odsecul*it:y_crsZ‘li_xss_attacks .conf
odsecurity_crs_45_trojans.conf

Malicious Client Identification odsoourity ors 46 ot web rules.cont <
ogsecurity_crs 3;_(iommclm_exceptions.cogf
. - odsecurity_crs _local_exceptions.con
Generlc AttaCk Slgnatures odsecurity_crs_49_ , .
odsecurity_crs_50_outhound.conf
T . odsecurity_crs_60_correlation.conf 3
Known Vulnerabilities Signatures . _ £
.Zoptional_r»rules: /
. odsecur%ty_CPS_ZB_protocol_uiolations-cor- o
Trojan/Backdoor Access RS T e P et
odsecurity_crs_42_comment_spam.conf

Outbound Data Leakage SdSecunity onrs 56 manketing conk o
Antl‘Vlrus and DOS utillty Scripts -é::lfuil}g:[uardian.pl modsec—clamscan.pl rur

vV VvV VvV VvV Vv V9

CRS Traditional Detection Mode — Birth of a Honeypot Probe

m IDS/IPS mode with “self-contained” rules

B Like HTTP itself — the rules are stateless
» No intelligence is shared between rules
» If a rule triggers, it will execute a disruptive/logging action

m Easier for the new user to understand
B Not optimal from a rules management perspective (handling false
positives/exceptions)

B Not optimal from a security perspective
» Not every site has the same risk tolerance
» Lower severity alerts are largely ignored

Event Logging - Standard vs. Correlated Events

B Standard mode
» Rules log event data to both the Apache error_log and the ModSecurity
Audit log can be relayed using mlogc http/json
m Correlated mode

» Basic rules are considered reference events and do not directly log to
the Apache error_log

» Correlation rules in the logging phase analyze inbound/outbound
events and generate special events

» modsecurity crs 60 correlation.conf

Modsecurity Log Collector (mlogc) — Event Logging

E-Mail

Notification AuditConsole

'\“HZ\

'\x

i % Event Processor { B R 1 1]

mlogc
Event Deletio

Scrlpt Execution
(planned) Event

Browsing AuditConsole
EE——

Database

Event Processor

Project Aims & Objectives

e The OWASP Honeypot Project provides:
— Real-time, detailed Web Application Attack Data
— Threat Reports to the community

* What do we need
— Volunteers to run honeypots/probes in their network

— Contributor’s to the project

Project Architecture

Attacker

WASC Analyst

Mlogc json/http log

 —
| C——

S
Q
N S i
Target Site Normal web _ WASC Honeypot Sensor . Central Logging Host
< i ModSecurity Management Appliance
comms h Y >
Script%23%.asp 1=11..I..]

Session ID =UX8serwderakvex Hacker.exe123

ModSecurity Inspects HTTP Payload and
Identifies it as an Attack

Attacker

Automated
Web Attacks
using
OWASP ZAP

WASC Honepot Sensor

§§

WASC Honeypot Sensor

VM Based WAF Probes

Project Test Bed

Audit Console
(Apache
Webserver)

—adl
S

-

-mlogc

HTTP audit
log data

—————>

Audit data
passed to PHP
script and
logged to
MySQL

Distributed Probes Model

A

- "6‘ - g ¥

‘“Security is lax on this side."

Ongoing & Future Work

Setup Proof of Concept to understand how Mod Security baed Honeypot/Probe
interacts with a receiving console (develop a VM and/or Docker based test
solution to store logs from multiple probes) DONE

Evaluate console options to visualise threat data received from ModSecurity
Honeypots/probes in ModSecurity Audit Console, WAF-FLE, Fluent and bespoke
scripts for single and multiple probes. Ongoing

Develop a mechanism to convert from stored MySQL to JSON format.

Provide a mechanism to convert ModSecurity mlogc audit log output into JSON
format.

Provide a mechanism to convert mlogc audit log output directly into ELK
(ElasticSearch/Logstash/Kibana) to visualise the data.

Ongoing & Future Work (cont’d)

Provide a mechanism to forward honest output into threat intelligence format such
as STIX using something like the MISP project (https://www.misp-project.org) to
share Threat data coming from the Honeypots making it easy to export/import
data from formats such as STIX and TAXII., may require use of concurrent logs in a
format that MISP can deal with.

Consider new alternatives for log transfer including the use of MLOGC-NG or other
possible approaches.

Develop a new VM based honeypot/robe based on CRS v3.0.

Develop new alternative small footprint honeypot/probe formats utilising Docker
& Raspberry Pi.

Develop machine learning approach to automatically be able to update the rule
set being used by the probe based on cyber threat intelligence received.

Any Questions?

