
SECURITY
OBSERVABILITY
101: THINKING
INSIDE THE BOX!

JEFF WILLIAMS, COFOUNDER AND CTO
@PLANETLEVEL

OWASP CHARLOTTE – OCT 2021

• 96% of applications have at
least one vulnerability

• The average software project
introduces 2-3 new
vulnerabilities every month

• The average application has
30+ vulnerabilities and 2+ high
or critical flaws in open source
libraries

• Average application codebase:
‒ 20% is custom code
‒ 6% is OSS that actually runs
‒ 74% is never used

• Only 14% of libraries are the
latest version

• The average
application is attacked
over 13,000 times a
month

• Zero applications were
not attacked every
single month

• 99% of attacks do not
connect with their
intended vulnerability

• Attacks on all
vulnerabilities are
trending up over the
last 12 months

VULNERABILITY FACTS ATTACK FACTS

REAL WORLD APPSEC FACTS FROM LAST 12 MONTHS…

Contrast 2021
AppSec Observability Report

INSTRUMENTATION CHANGES EVERYTHING

4

INSTRUMENTATION IS EASY

Platform

Agent Loader

ClassClassClass

ClassClassClass

Transformer

Original
Code

Instrumented
Code

Transformer adds security
sensors to code

Run instrumented code!

5

USE INSTRUMENTATION
TO DEFINE SENSORS

THAT MAKE SOFTWARE
BEHAVIOR OBSERVABLE

ADD IN SENSORS TO REVEAL SECURITY

INSTRUMENTATION
PROVIDES CONTINUOUS

ACCURATE REALTIME
TELEMETRY

WIN!

“RUNTIME REALITY”
FULLY ASSEMBLED AND

RUNNING APPS/APIS
ARE THE ONLY SOURCE

OF TRUTH

6

THE JAVA OBSERVABILITY TOOLKIT (JOT)

https://github.com/planetlevel/jot

${JOT}

FREE OPEN SOURCE INSTRUMENTATION

https://github.com/planetlevel/jot

7

RIDICULOUSLY SIMPLE EXAMPLE: WEAK SQL QUERIES

8

WHAT ENCRYPTION IS HAPPENING?

In JOT, a “capture” is a “spring expression” (SPEL) that
allows you to extract data using references to objects

in the running app/API.

• #P0 is the first parameter to the method
• #OBJ is the object itself
• #RET is the return value from the method

You can call methods on these references!!!

9

VERIFYING ACCESS CONTROL?

10

CHEATING AT PENTESTS FOR FUN AND PROFIT

SQL Injection

Command Injection

EL Injection

11

COMMUNICATING SECURITY VIA TEST FAILURES
Define this “scope” and
add an exception. Now

your normal test cases fail
for security reasons if your

sensor fires!

https://www.linkedin.com/pulse/developer-friendly-security-reporting-jeff-williams

12

HOW CAN I PREVENT
EXPRESSION LANGUAGE
INJECTION FROM BEING
EXPLOITED?

Runtime Protection!

13

In DEV and TEST

RASP

Config
Sensors

Code
Sensors

Control Flow
Sensors

HTTP
Sensors

Backend
Sensors

Data Flow
Sensors

Library
Sensors

IAST

In PROD

✘
Exploit
Prevented

Vulnerability
Confirmed

Config
Sensors

Code
Sensors

Control Flow
Sensors

HTTP
Sensors

Backend
Sensors

Data Flow
Sensors

Library
Sensors

Interactive Application
Security Testing is simply
using instrumentation to
detect vulnerabilities.
USE IT IN DEVELOPMENT.

Runtime Application Self-
Protection is simply using
instrumentation to detect attacks
and prevent exploits.
USE IT IN PRODUCTION

14

EMBEDDED MODEL
MODERN

• Embedded, works in flow, frictionless
• Force multiplier, no experts required
• Direct observation, instant feedback

• Continuous, always-on
• One platform across dev, sec, ops

SCAN AND FIREWALL MODEL
LEGACY

• Disruptive, bottleneck
• Can’t keep up, even with army of experts
• After the fact, inaccurate

• Snapshot in time
• Tool soup, security silos

THE MOVE TO MODERN
SOFTWARE SECURITY

15

PRODSTAGETEST

Continuous automated security testing
and exploit prevention

Instant
Feedback

Attacks

SEC

DEV OPS

FLOW
BUSINESS VALUE

+
CONTINUOUS

ASSURANCE

SECURITY
OBSERVABILITY
(INSIDE – OUT)

DEV

RUNTIME

APP SERVER
FRAMEWORKS

LIBRARIES
CUSTOM CODE

Self-
Testing

Self-
Protecting

Vulnerabilities

Instrumentation
(IAST, SCA, RASP)

RUNTIME

APP SERVER
FRAMEWORKS

LIBRARIES
CUSTOM CODE

SECURITY OBSERVABILITY ACCELERATES INNOVATION

CI/CD

16* DATA FROM CONTRAST 2020 APPSEC OBSERVABILITY REPORT AND VERACODE 2020 SOSS REPORT

– SAST

– IAST

– IAST (BELOW AVERAGE BACKLOG)

OBSERVABILITY
YIELDS A

17X
IMPROVEMENT IN

MTTR OVER
SCANNING

MEAN TIME TO REMEDIATE

17

https://www.linkedin.com/pulse/how-vulnerability-jeff-williams

“How to Vulnerability”

18

https://www.linkedin.com/pulse/making-security-software-factory-jeff-williams/

“Making Security in a Software Factory”

19

ASK ME ANYTHING

JEFF WILLIAMS, COFOUNDER AND CTO
@PLANETLEVEL

OWASP CHARLOTTE – OCT 2021

