
Behind the Package: Unmasking
Malicious Intent in Software

Tyler Agypt

Director of Strategic Initiatves
Checkmarx

OWASP – Cinci Chapter

Fighting Software Supply Chain Attackers

</ >

Software Suppliers Are Software Consumers

3

S O F T W A R E H A S C H A N G E D

BuildCheck-inCode

</>

Package Deploy Go-live

Jenkins Artifactory AWS

Github Co-Pilot

NPM colors

NPM fonts

</ >

Attacks are executed at any point in SDLC

S O F T W A R E S U P P L Y C H A I N S E C U R I T Y

</ >5

Risk Tolerance is Quickly Changing
S O F T W A R E S U P P L Y C H A I N S E C U R I T Y

Software Supply Chain Attack
An event in which a bad actor breaches the system to utilize the

supplier's distribution for a larger attack as an example SolarWinds

BuildCheck-inCode

</>

Package Deploy Production

Attack

Risk

Vulnerability

Risk

Software Supply Chain Security
Supply chain security focuses on protecting the entire process of creating and

distributing software, from the initial development to the final delivery to the end user.

Software Supply Chain Vulnerability
An accidental security flaw in a piece of the complex application creation as an

example Log4Shell

</ >6

Vulnerable Dependencies:

• exploited to gain unauthorized

access or steal sensitive data

• CVE assigned

Malicious Dependencies:

• used as an attack vector to

compromise your systems

• CVE not assigned

OSS Dependency: Understanding the Risk

S O F T W A R E S U P P L Y C H A I N S E C U R I T Y

</ >

Why Software Supply Chain Security Matters

S U P P L Y C H A I N T H R E A T I N T E L L I G E N C E

150,878+ malicious packages discovered by Checkmarx Labs in 2023

Compared to 25,226 vulnerabilities reported in 2022

<140 malicious package in database>

???

11

Why we naturally tend to trust OSS so much

• Open for everyone to look
• If there’s an issue “someone” will notice
• There are scoring mechanisms to star and rate
• It gives a trustworthy feeling

How do we tend to understand OSS credibility?

Package Usage?

A

B

Package Downloads/Stars/Last Updated?

A

B

Developer History and Company?

A

B

How do we tend to understand OSS credibility?

Popular != Safe
Lesson #1

58

Popular Packages Gone Bad

ua-parser-js

coa

rc

node-ipc

colors, faker

styled-components

…

Don’t Believe What You See
Lesson #2

Five Easy Ways

• Starjacking - stealing stars from known, respected packages to an attacker's

newly created package.

• Repojacking - hijacking a respected package/repo path using a simple

rename.

• Spoofing Contributor activity using unverified commits.

• Adding known Contributor to malicious repo/packages.

• Spoofing Contributor organization

Attackers are Evolving
Lesson #3

Knowledge is Power
Lesson #4

𝐇𝐨𝐰 140𝐤 𝐍𝐮𝐆𝐞𝐭, 𝐍𝐏𝐌, 𝐚𝐧𝐝 𝐏𝐲𝐏𝐢 𝐏𝐚𝐜𝐤𝐚𝐠𝐞𝐬 𝐖𝐞𝐫𝐞
𝐔𝐬𝐞𝐝 𝐭𝐨 𝐒𝐩𝐫𝐞𝐚𝐝 𝐏𝐡𝐢𝐬𝐡𝐢𝐧𝐠 𝐋𝐢𝐧𝐤𝐬

* Joint research of Checkmarx supply chain research team and illustria.io
resulted with an anomaly discovered in the open-source ecosystem
* Over 144,000 packages were published to NuGet, NPM, and PyPi by the same
threat actors
* Investigation revealed a new attack vector — attackers spam open-source
ecosystem with packages containing links to phishing campaigns
* All packages and related user accounts were most likely created using
automation
* The threat actors refer to retail websites with referral ids to benefit the threat
actors with referral rewards.
* Our teams disclosed the findings in this report and most of the packages
were unlisted.

THE INDUSTRY’S MOST COMPREHENSIVE APPSEC PLATFORM

I aC
Secur i ty

API
Secur i ty

SAST SCS DAST
Conta iner
Secur i ty

SCA

APPLICATION

L IFECYCLE:
Deploy Go-L ive FeedbackDes ign Code Check - In Bui ld Tes tTra in

Deployed

Anywhere :

S ing le tenant
Se l f

Managed

SaaS Mul t i
Tenant

Uni f ied Dashboard & Repor t ing Shared Enterpr ise Serv ices

	intro
	Slide 1: Behind the Package: Unmasking Malicious Intent in Software

	supply chain and slsa
	Slide 2: Fighting Software Supply Chain Attackers
	Slide 3: Software Suppliers Are Software Consumers
	Slide 4: Attacks are executed at any point in SDLC
	Slide 5
	Slide 6: OSS Dependency: Understanding the Risk
	Slide 7: Why Software Supply Chain Security Matters
	Slide 8
	Slide 9: <140 malicious package in database>

	open source and transitive deps
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Why we naturally tend to trust OSS so much
	Slide 17: How do we tend to understand OSS credibility?
	Slide 18: Package Usage?
	Slide 19: Package Downloads/Stars/Last Updated?
	Slide 20: Developer History and Company?
	Slide 21: How do we tend to understand OSS credibility?

	### lesson - popular != safe
	Slide 22: Popular != Safe

	takeover - ua-parser, coa, rc
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

	protest - node-ipc
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

	list of all packages gone bad
	Slide 59: Popular Packages Gone Bad

	### lesson - don't beleive what you see
	Slide 63: Don’t Believe What You See

	typosquatting and starjacking
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

	demo publish malicious pkg
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81: Five Easy Ways

	### lesson - attackers are persistent
	Slide 82: Attackers are Evolving
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 93

	evolving - red lili
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110

	### lesson - knowledge is power
	Slide 121: Knowledge is Power
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131: 𝐇𝐨𝐰 140𝐤 𝐍𝐮𝐆𝐞𝐭, 𝐍𝐏𝐌, 𝐚𝐧𝐝 𝐏𝐲𝐏𝐢 𝐏𝐚𝐜𝐤𝐚𝐠𝐞𝐬 𝐖𝐞𝐫𝐞 𝐔𝐬𝐞𝐝 𝐭𝐨 𝐒𝐩𝐫𝐞𝐚𝐝 𝐏𝐡𝐢𝐬𝐡𝐢𝐧𝐠 𝐋𝐢𝐧𝐤𝐬

	summary
	Slide 134
	Slide 135
	Slide 136
	Slide 137

