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Fighting Software Supply Chain Attackers
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Software Suppliers Are Software Consumers
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S O F T W A R E  H A S  C H A N G E D
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Attacks are executed at any point in SDLC

S O F T W A R E  S U P P L Y  C H A I N  S E C U R I T Y
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Risk Tolerance is Quickly Changing
S O F T W A R E  S U P P L Y  C H A I N  S E C U R I T Y

Software Supply Chain Attack
An event in which a bad actor breaches the system to utilize the 

supplier's distribution for a larger attack as an example SolarWinds

BuildCheck-inCode
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Package Deploy Production

Attack

Risk

Vulnerability

Risk

Software Supply Chain Security
Supply chain security focuses on protecting the entire process of creating and 

distributing software, from the initial development to the final delivery to the end user.

Software Supply Chain Vulnerability
An accidental security flaw in a piece of the complex application creation as an 

example Log4Shell
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Vulnerable Dependencies:

• exploited to gain unauthorized 

access or steal sensitive data

• CVE assigned

Malicious Dependencies:

• used as an attack vector to 

compromise your systems

• CVE not assigned

OSS Dependency: Understanding the Risk

S O F T W A R E  S U P P L Y  C H A I N  S E C U R I T Y
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Why Software Supply Chain Security Matters

S U P P L Y  C H A I N  T H R E A T  I N T E L L I G E N C E

150,878+ malicious packages discovered by Checkmarx Labs in 2023 

Compared to 25,226 vulnerabilities reported in 2022





<140 malicious package in database>



???
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Why we naturally tend to trust OSS so much

• Open for everyone to look
• If there’s an issue “someone” will notice
• There are scoring mechanisms to star and rate
• It gives a trustworthy feeling



How do we tend to understand OSS credibility?



Package Usage?

A

B



Package Downloads/Stars/Last Updated?

A

B



Developer History and Company?

A

B



How do we tend to understand OSS credibility?



Popular != Safe
Lesson #1
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Popular Packages Gone Bad

ua-parser-js

coa

rc

node-ipc

colors, faker

styled-components

…



Don’t Believe What You See
Lesson #2





































Five Easy Ways 

• Starjacking - stealing stars from known, respected packages to an attacker's 

newly created package.

• Repojacking - hijacking a respected package/repo path using a simple 

rename.

• Spoofing Contributor activity using unverified commits.

• Adding known Contributor to malicious repo/packages.

• Spoofing Contributor organization



Attackers are Evolving
Lesson #3







































Knowledge is Power
Lesson #4





















𝐇𝐨𝐰 140𝐤 𝐍𝐮𝐆𝐞𝐭, 𝐍𝐏𝐌, 𝐚𝐧𝐝 𝐏𝐲𝐏𝐢 𝐏𝐚𝐜𝐤𝐚𝐠𝐞𝐬 𝐖𝐞𝐫𝐞 
𝐔𝐬𝐞𝐝 𝐭𝐨 𝐒𝐩𝐫𝐞𝐚𝐝 𝐏𝐡𝐢𝐬𝐡𝐢𝐧𝐠 𝐋𝐢𝐧𝐤𝐬

* Joint research of Checkmarx supply chain research team  and illustria.io 
resulted with an anomaly discovered in the open-source ecosystem
* Over 144,000 packages were published to NuGet, NPM, and PyPi by the same 
threat actors
* Investigation revealed a new attack vector — attackers spam open-source 
ecosystem with packages containing links to phishing campaigns
* All packages and related user accounts were most likely created using 
automation
* The threat actors refer to retail websites with referral ids to benefit the threat 
actors with referral rewards.
* Our teams disclosed the findings in this report and most of the packages 
were unlisted.
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