
Dark Side of AI
Writing Insecure Applications In Minutes

Chris Lindsey
Field CTO – OX Security

Shared Version

Thank You for attending, “The Dark Side of AI: Writing Insecure
Applications in Minutes”
A quick message from me (Chris):

I really enjoy sharing with the security community. It’s a passion that I
have and part of my mission to help make applications more secure. I
put a lot of effort in writing this talk, this sharable version is only for
those who personally attended my talk. Please do not share or use
these for your own talk without reaching out to me first.

Note about this sharable version of the slides:

This presentation does not include the screen shots or the videos that
were shown during the presentation. This was done to make the deck
easier to share. (Actually, made it extremely large). The core pieces of
this talk are included. You can take the prompts and try them out for
yourself. The results should be very similar.

I am always open to giving this talk: to a community, company or group
of folks who want to hear it. Feel free to reach out to me.

I can be reached either at chris.lindsey@ox.security or via LinkedIn
https://www.linkedin.com/in/chris-lindsey-39b3915.

● Introduction
● Common Prompts
● Writing Software using AI
● Reviewing Generated Code
● Going Deeper with Security
● Final Thoughts
● Q & A

Agenda

Why this matters
Introduction

Introduction

● 76% of developers will use
development AI tools this year, 70%
last year.

○ Stack Overflow Developer
Survey 2024

● 97% of developers have used AI
coding tools at some point.

● 40% employers actively encourage
and promote AI tool adoption.

○ GitHub Survey

AI tools have become integral to modern software development, enhancing productivity and code
quality. Recent surveys and studies provide insights into the extent of AI adoption among developers:

Introduction
AI tools have become integral to modern software development, enhancing productivity and code
quality. Recent surveys and studies provide insights into the extent of AI adoption among developers:

● Google -> AI Generates 25% of
new code

● Gartner -> By 2027, 50% of
code engineering will use AI

○ Up from 5% in 2024

These findings underscore the growing integration of AI tools in software development,
highlighting their role in enhancing efficiency and code quality.

Quick Prompting 101
Common Prompts

Common Prompts
Prompting is an art and science

How you prompt is just as important as how you code. Un-Focused prompting will result in sloppy
results, while strategic prompts will result in clean and focused results.

Tips for better prompting:

● Be as specific as possible
● Supply AI with examples

when possible
○ Example methods, formats

that you're looking for

Common Prompts
Prompting is an art and science

How you prompt is just as important as how you code. Un-Focused prompting will result in sloppy
results, while strategic prompts will result in clean and focused results.

Tips for better prompting:

● Provide data
○ Tables, structures, details

● Provide “what to do” instead of
what “Not to do”

Common Prompts

● Try chain of thought
prompting
○ It’s ok to spoon feed the

prompt, you don’t have
to give it a paragraph to
work from

● Split complex tasks into
simpler ones

Prompting is an art and science

Common Prompts

● Understand that the results
might be wrong and you
have to tell the model
○ Asking the model, “Are you

sure” or “Is this right?”

Prompting is an art and science

Basic Prompting = Basic
Results

Common Prompts

Common Prompts
These examples are commonly used and are too vague. While these can be useful, they lack common
key elements that would make better results.
Basic API Setup

1. "Generate a basic C# .NET Core Web API project with CRUD operations for a Person entity using Entity
Framework Core and SQL Server."

2. "Create a C# Web API in .NET Core that connects to a SQL Server database and performs CRUD operations
using stored procedures."

3. "Generate a C# .NET 6 Web API template with proper project structure and dependency injection."

Controllers and Routing

4. "Write a C# Web API controller for managing Person entities with endpoints for Create, Read, Update, and
Delete."

5. "Generate a C# API controller with attribute-based routing and versioning in .NET Core."

Data Access Layer (DAL)

6. "Create a repository pattern in C# for handling database operations in a .NET Core Web API project."
7. "Generate a C# data abstraction layer for a .NET Core Web API using stored procedures."
8. "Write a C# service layer that interacts with the data layer and provides business logic for an API."

Common Prompts
These examples are commonly used and are too vague. While these can be useful, they lack common
key elements that would make better results.

Database Integration

9. "Create a C# Entity Framework Core DbContext and models for a Person table with name,
address, city, state, zip code, and phone number."

10. "Generate SQL Server stored procedures for CRUD operations and a corresponding C# data
access layer to interact with them."

Security & Authentication

11. "Implement JWT authentication in a C# .NET Core Web API with login and registration
endpoints."

12. "Secure a C# Web API using API keys and middleware for request validation."
13. "Implement role-based authorization in a .NET Core Web API using JWT and ASP.NET Identity."

Common Prompts
These examples are commonly used and are too vague. While these can be useful, they lack common
key elements that would make better results.

Validation & Error Handling

14. "Add FluentValidation to a C# .NET Core Web API for validating request models."
15. "Implement global exception handling in a .NET Core Web API using middleware."

Testing & Documentation

16. "Generate Swagger/OpenAPI documentation for a C# .NET Core Web API."
17. "Write unit tests for a C# Web API controller using xUnit and Moq."

Better Prompting = Less
hours spent fixing AI
code

Common Prompts

Common Prompts – Better Focus
These examples are more specific. These can be used as starter prompts to generate better results
than previous examples.

Frontend Framework Selection & Setup

1. "Generate a React frontend that connects to a .NET Core API for CRUD operations on a Person entity."
2. "Set up an Angular application that fetches and updates data from a C# Web API."
3. "Create a simple Vue.js application that interacts with a .NET Core API to display and modify person data."

Fetching Data from API

4. "Write a React component that fetches data from a .NET Core Web API using Axios and displays it in a
table."

5. "Generate an Angular service to interact with a .NET Core Web API for handling Person CRUD operations."
6. "Create a JavaScript fetch request to get data from a .NET Core Web API and display it on a webpage."

Form Handling & Data Submission
7. "Create an Angular reactive form to submit data to a C# Web API and display success/error messages.“
8. "Generate a React form with validation to add a new Person record via a .NET Core API."
9. "Write a Vue.js component that binds a form to an API call for adding a new record."

Common Prompts – Better Focus
These examples are more specific. These can be used as starter prompts to generate better results
than previous examples.
State Management & UI Libraries

10. "Use React Query to manage API data fetching and caching in a React frontend that connects to a .NET
Core backend."

11. "Generate a Redux store and actions for managing state from a .NET Core API in a React app."
12. "Set up NgRx in an Angular app to manage API responses from a .NET Core backend."

Authentication & Security

13. "Implement JWT authentication in a React app that consumes a .NET Core API."
14. "Create an Angular authentication service that handles login/logout with a JWT-secured C# Web API."
15. "Secure API calls in a React app using OAuth 2.0 authentication with a .NET Core backend."

Error Handling & User Feedback

16. "Write a React error boundary component to handle API request failures and display user-friendly
messages."

17. "Generate an Angular interceptor for handling HTTP errors and displaying toast notifications."
18. "Implement a global error handling mechanism in a Vue.js app that interacts with a .NET Core API."

Common Prompts – Better Focus
These examples are more specific. These can be used as starter prompts to generate better results
than previous examples.

Tables, Pagination & Filtering

19. "Create a React DataTable component that fetches paginated data from a .NET Core API."
20. "Generate an Angular Material table with sorting, filtering, and pagination that connects to a .NET

Core API."
21. "Write a Vue.js component with a search bar and filters to query a .NET Core backend."

Deployment & Optimization

22. "Build and deploy a React frontend and .NET Core backend as a full-stack web application using
Docker."

23. "Optimize API calls in a React app using caching and memoization techniques."
24. "Set up CI/CD for an Angular frontend and .NET Core backend using GitHub Actions."

Writing Software using AI

How you prompt is the
difference between
success and failure

Writing Software using AI

Back End –
ChatGPT

Writing Software Using AI - ChatGPT
ChatGPT appears to be drunk, my prompt: Update the webpage to include the fields in the person model and add
a button that calls that api back end.

OnPostGetPeople()
was removed and
replaced with
OnPostAddPerson()

Most of the method
has the previous
code – what
happened here?

Writing Software using AI

Back End –
Using Claude 3.7

Writing Software Using AI – Back End (Claude 3.7)
Goal: To mimic how a normal developer attempts to write a basic application that contains both a front
end and API back end.

The following prompts will be used to build today’s application. Between each prompt, we will discuss what we
see.

1. Generate a basic C# .NET Core Web API project with CRUD operations for a Person entity using Entity
Framework Core and SQL Server.

a. What’s missing?
i. Role Based Access, Security Tokens, Data validation, Unit Test Cases, lack of error handling,

database security (Stored Procedures, etc…)
2. What security issues do you see with this? What is missing and what can I do to make it more secure?

a. Getting closer, but still missing key security pieces such as Tokens, RBA and more listed from above
3. Please secure the code from the identified security findings. Also, implement JWT Tokens including

endpoints to log on and retrieve a JWT token.
4. What security issues do you see with this? What is missing and what can I do to make it more secure?
5. Please secure the code from the identified security findings.
6. Can you provide the application files in download form for me to open this application in visual studio?

a. Result of this was the steps to install

Writing Software using AI

Front End –
Using Claude 3.7

Writing Software Using AI – Front End (Claude 3.7)
The following prompts will be used to build today’s application. Between each prompt, we will discuss what we
see.

1. Generate a front end web based application that ties into this backend api that you generated for me.
This should be in the same language and have the hooks to connect into the api that you just provided to
me.

2. What security issues do you see with this? What is missing and what can I do to make it more secure?
a. Findings: Token Storage in public property, Missing CSRF Protection, Weak Credential Handling, No

Input Validation, JWT Token Expiration, No rate limiting, Session Fixation Vulnerability
3. Please secure the code from the identified security findings

a. JsonSerializer.Deserialize is not sanitized, so this could be an issue
b. Missing person validation - Front end should still attempt to validate the same thing the back end

should

The following prompts will be used to build today’s application:

1. Open Command Prompt as administrator and
run these commands

a. mkdir PersonApi
b. cd PersonApi
c. dotnet new sln
d. dotnet new razor -o PersonApiFrontend
e. dotnet sln add PersonApiFrontend
f. dotnet new razor -o PersonApiBackend
g. dotnet sln add PersonApiBackend

2. Open Visual Studio and open new sln
3. Build Solution

Building Generated Code

Writing Software using AI

Summary:
Reviewing Code

Where the rubber hits the road - Observations:

1. You can’t expect any “GPT” system to write your application for you
a. Every “GPT” system

i. created code that looked good, in pieces
ii. Generated insecure code, even when told to write secure code
iii. Even after multiple attempts asking “GPT” if the code had

security issues, it still kept coming up with more. It would
Fix some, but then create or revert back other fixes.

b. ChatGPT - Acted like a drunk coder, however, code did compile. It
Was missing the vast majority of what we asked for even when
asked to create secure code.

c. Claude - Senior developer who has not been trained on security,
tries it’s best, but falls just a little short

d. Copilot - I’ll give you code that looks right, but good luck trying to
build what I gave you

Findings: Like transformers, more than meets the eye!

Reviewing Generated Code

“GPT” can only
take you so far,
how about
enterprise security
tools?

Going Deeper with Security

“GPT” can only take you
so far, how about
enterprise security
tools?

Going Deeper with Security

“GPT” can only take you
so far, how about
enterprise security
tools?

Going Deeper with Security

“GPT” can only take you so far, how about enterprise security tools?

Going Deeper with Security

What does ChatGPT have to say on this matter?

Going Deeper with Security

Going Deeper with Security

Enterprise security tools, like SAST (Static Application Security Testing), DAST (Dynamic Application Security
Testing), and SCA (Software Composition Analysis), are significantly better at finding security vulnerabilities than
AI coding assistants like ChatGPT, Copilot, or Claude. Here’s why:

1. Depth and Accuracy of Analysis

● Enterprise Security Tools
○ Designed specifically for security scanning, using pattern matching, taint analysis, control flow analysis, and

machine learning models trained on security-specific datasets.
○ Can find vulnerabilities like SQL injection, XSS, hardcoded secrets, and insecure cryptographic

implementations with high accuracy.
○ Provide compliance and regulatory checks (e.g., OWASP Top 10, NIST, PCI DSS).

● AI Coding Assistants
○ Trained on a mix of secure and insecure code, meaning they can generate both good and bad code.
○ Can highlight basic syntax errors and sometimes suggest secure coding practices, but they don’t perform in-

depth static analysis.
○ Lack deep codebase context, making them prone to missing vulnerabilities that require

inter-file or dependency-level understanding.

“GPT” can only take you so far, how about enterprise security tools?

Going Deeper with Security

2. Codebase Coverage

● Enterprise Security Tools
○ Can scan entire repositories, tracking vulnerabilities across multiple files, functions, and even microservices.
○ Can integrate with CI/CD pipelines to enforce security policies.

● AI Coding Assistants
○ Only analyze small snippets of code at a time.
○ Lack the ability to track vulnerabilities across multiple files or detect issues in a full codebase.

3. False Positives & False Negatives

● Enterprise Security Tools
○ While they can produce false positives, modern SAST tools are tunable and can filter out noise with rule-based

configurations.
○ They also leverage data flow analysis to identify true vulnerabilities more effectively.

● AI Coding Assistants
○ Often suggest code that "looks correct" but may introduce subtle vulnerabilities.
○ Don’t perform proper taint analysis or data flow tracking, leading to missed issues (false negatives).

Enterprise Tools vs “GPT”

Going Deeper with Security

4. Security-Specific Knowledge

● Enterprise Security Tools
○ Continuously updated with vulnerability databases (e.g., CVEs, CWE, OWASP).
○ Can detect newly disclosed vulnerabilities in third-party libraries and dependencies.

● AI Coding Assistants
○ Not security-focused and may generate code that reintroduces known vulnerabilities.
○ Don’t check against vulnerability databases in real-time.

5. Regulatory and Compliance Support

● Enterprise Security Tools
○ Help enforce compliance with industry security standards and best practices.
○ Can generate security reports for audits.

● AI Coding Assistants
○ Cannot enforce compliance or generate security reports.

Enterprise Tools vs “GPT”

Final Thoughts

• There is NO magic bullet when it comes to
development and AI

• Human intervention is key for success

• Just because you can, does not mean you should

Thank You!

Chris Lindsey
Field CTO – OX Security

https://www.linkedin.com/in
/chris-lindsey-39b3915

