Issued for Abuse

Measuring the Underground Trade in Code Signing Certificates

Kristián Kozák*, Bum Jun Kwon*, Doowon Kim*, Tudor Dumitraș*

*Masaryk University, Brno
*University of Maryland

Presented at WEIS 2018
Code Signing: Overview

Code Signing Certificate:
Binding a signing key to a software publisher.
Do you want to allow this app from an unknown publisher to make changes to your device?

Publisher: Unknown
File origin: Hard drive on this computer

Show more details

Yes No
Anonymous Certificates

Code signing designed to prevent anonymous publishers
PUP: Fine with code signing [Kotzias 2015]
Malware: Needs anonymous signatures [Kim 2017]

Where do the malware authors get the valid signatures?

Software code signing certificates worth more than guns on the Dark Web

What is their business model?
Research Methods & Goals

Black markets for code signing not studied systematically yet
Hard to formulate hypotheses a-priori

Inductive approach (hypotheses from data)
Gather evidence about the activity of underground vendors
Analyze usage of certificates in signed malware
Infer the role of the black market in the production of signed malware

Passive measurement
No influence over black market (exception: responsible disclosure)
Data Collection

Supply view

Observation of the black market
Manual analysis: August 2017
Automated collection of stock information: Sep-Nov 2017

Demand view

Analysis of signed malware dataset
Collected: Apr-Aug 2017
Supply: Where is the black market?

Challenges

Past reports: E-shop already down
No goods at SilkRoad (data by [Christin 2013])
No goods among other general marketplaces

Data collection

Start
Set of known sites

Expansion
Following links & handles

Saturation
No new sites anymore
Some remain inaccessible
Demand: Collection & Clustering

VirusTotal Hunting + Filtering
14,221 correctly signed malware samples
1,163 abusive certificates

Clustering of publisher identities
LTD "Vet Fektor"
OOO, Vet - Fektor
LLC `VET FEKTOR`

AVClass: Malware family labeling

Graph analysis
Business on forums + one new e-shop

4 vendors identified, each across multiple forums

Post count increased more than 2-fold in early 2017
Mechanisms and Business Model

Selling anonymous code signing certificates

No evidence of other business models (signatures, PPI)

Each certificate is fresh, never used and sold only once
Driving the Demand

SmartScreen appears to drive the demand

Bypass SmartScreen = Build positive reputation

Comodo code signing certificates are the easiest and cheapest on market.

Comodo certificate can help with UAC, but if you want to get rid of SmartScreen and Chrome warnings, the certificate must gain a positive reputation first.

If you get rid of these warnings immediately, consider buying an EV certificate

Regular price is $350, contact us for bulk discount (3 pcs or more)
Origin of the Certificates

Supply side view
Vendors: Certificates are fresh + 1 year of validity
Lying ⇒ Loosing reputation ⇒ Sales more difficult

Demand side view
Are the certificates compromised or obtained from the CAs?
Prior methods [Kim et al., 2017] no longer usable
Idea: Interval between issue date and abuse date
• We compute an upper bound
• Assumption: Compromised certificates are uniformly likely to be stolen & abused during their lifetime
Certificate Origin: Issue to Abuse Interval

50% abused within the first 40 days

Certificates likely obtained from CAs directly
Not compromised from legitimate publishers

⇒ Contrary to previous reports
Sales Volumes: Evidence

Forums
Sales take place in private
Vouches & Stock updates provide limited insight

E-shop
3rd party payment component loaded on front-end
Providing the count of certificates on stock
Plus the date of stock updates, later used for linking the certificates
Sales Volumes: Estimate (E-shop)

<table>
<thead>
<tr>
<th>Certificate</th>
<th>Regular ($)</th>
<th>Black Market ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comodo</td>
<td>85</td>
<td>350</td>
</tr>
<tr>
<td>Thawte</td>
<td>300</td>
<td>600</td>
</tr>
<tr>
<td>EV (Comodo)</td>
<td>320</td>
<td>3,000</td>
</tr>
</tbody>
</table>

Observed sales

Sales of 41 non-EV certificates observed

EV certificates sold in private

<table>
<thead>
<tr>
<th>Duration</th>
<th>Revenue ($)</th>
<th>Max. Profit ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td>4,600</td>
<td>2,850</td>
</tr>
<tr>
<td>Total</td>
<td>> 16,000</td>
<td>9,850</td>
</tr>
</tbody>
</table>

Vendors may incur additional costs for setting up fake identities etc.
Relationships

Certificate = a link
• between a publisher & a malware family
• between two malware families
Relationships

Major Component

Contains
90% of malware samples
70% of certificates
50% of malware families
mostly Russian publishers
Major Component

Properties
- Indicates smaller dev teams
- Strong connectivity (= cooperation?)
- Faster certificate abuse rate
Conclusions

Business model: Trading code signing certificates
Growing demand

Certificates appear to be obtained directly from CAs
Evidence consistent with a reliable supply of certificates
Market confidence, vendors able to respond to demand
Hypothesis: Use of shell or impersonated companies

Recommendation: Standardise the publisher name format

Data release: www.signedmalware.org
Publications

WEIS 2018

Issued for Abuse: Measuring the Underground Trade in Code Signing Certificates
Kozák, K., Kwon, B. J., Kim, D., Dumitraș, T.
17th Annual Workshop on the Economics of Information Security (WEIS 2018)

The Broken Shield: Measuring Revocation Effectiveness in the Windows Code-Signing PKI
Kim, D., Kwon, B. J., Kozák, K., Gates, Ch., Dumitraș, T.
27th USENIX Security Symposium (USENIX Security ’18)
Thank you!

Kristián Kozák
kkozak@mail.muni.cz
signedmalware.org
Identifying Traded Certificates 1/2

Supply side: E-shop
Specified CA: Thawte
Claimed on a forum: British publishers
Observing stock: Issue date

Observed stock updates: occurred on 9 / 104 days

Assumptions
Vendor puts certificates in stock immediately
Vendor did not lie (about British publishers)
Identifying Traded Certificates 2/2

Matching criteria
Supply side: Thawte, British publisher, 9 potential issue dates

Demand side: Signed Malware Dataset
145 certificates issued during 104-day observation period
10 are by Thawte; 11 have a British publisher
5 are by Thawte & have a British publisher
All 5 match a potential issue date

Likelihood: If a cert is equally likely to be issued on any day …
1 match by chance: $p = 9 / 104 = 8.7\%$
5 matches by chance: $p = (8.7\%)^5 = 0.0005\%$