
Classification: PUBLIC

Navigating through the
open-source security

risks
Stanislav Sivák
May 27th, 2025

Classification: PUBLIC

Goals

⚫ Understand the open-source software risk complexity

⚫ Understand how solutions looks like

⚫ Review your current approach for your environment or prepare questions
to find out more

⚫ Share your experience in treating open-source risks with us!

Classification: PUBLIC

⚫ Introduction
⚫ Motivation
⚫ Solution
⚫ Approaches
⚫ Q&A

Agenda

Disclaimer:

“This is my personal presentation and represents neither my current employer nor any

other organization.”

Classification: PUBLIC

Introduction
⚫ I started working in cybersecurity in 2007 and later switched to software

security

⚫ Worked in various organizations in Luxembourg and Germany before
coming to Czech Republic

⚫ Acted in various security roles: developer, engineer, tester, consultant,
manager

⚫ Currently being responsible for a software security champions program
at a Czech bank

Classification: PUBLIC

Source: Black Duck OSSRA Report 2025

Open-source risks in 2024

https://news.blackduck.com/2025-02-25-New-Black-Duck-Report-86-of-Commercial-Codebases-Contain-Vulnerable-Open-Source,-Exposing-Organizations-to-Security-Risks

Classification: PUBLIC

Have you heard yet?

May 2025 March 2025

April 2025 April 2025

Classification: PUBLIC

Open source enters your code through many channels…

… and it also brings its specific risks

Where it comes from?

Classification: PUBLIC

Challenges

Classification: PUBLIC

1. Know my assets

CIO

10

⚫ I need further information to our application inventory…

⚫ How much open-source software do we use?

⚫ How is the use of open-source software governed in our organisation?

Struts 2.5.3JQuery 1.5 Angular v16

RubyZip 2.3.2 OpenSSL 3.0.0 RubyZip

Software Bill of Materials

Classification: PUBLIC

2. Know my security risks

CISO/Security

Manager

10

⚫ Which our products have open-source vulnerabilities?

⚫ Do we have any components with critical and high vulnerabilities?

⚫ Which our projects have the XXX vulnerable component?

⚫ How do we recognize vulnerable and/or malicious components?

OWASP TOP 10

A06:2021 Vulnerable and Outdated Components

Classification: PUBLIC

3. Know my legal risks

Compliance team

10

⚫ Are we legally allowed to deploy/distribute our software with its current open source?

⚫ Do we have any open-source licenses non-compliant with our internal policy?

⚫ Are any open-source licenses contradictory?

Classification: PUBLIC

3. Know my legal risks

10

Licensing Scheme License Family Examples Risk Level

Copyleft Affero General

Public License

(AGPL)

⚫ GNU Affero General Public License v3 or

later

Very High

Copyleft Reciprocal ⚫ GNU General Public License (GPL) 2.0 or

3.0

⚫ Sun GPL with Classpath Exception v2.0

High

Copyleft Weak reciprocal ⚫ Code Project Open License 1.02

⚫ Common Development and Distribution

License (CDDL) 1.0 or 1.1

⚫ Eclipse Public License

⚫ GNU Lesser General Public License

(LGPL) 2.1 or 3.0

⚫ Microsoft Reciprocal License Mozilla

Medium

Non-commercial use Non-commercial ⚫ Aladdin Free Public Licens (AFPL)

⚫ Java Research License (JRL)

Very High

Copyright (©) N/A Very High

Classification: PUBLIC

4. Operational risks

⚫ How well is the component maintained by the community?

⚫ Are security vulnerabilities/bugs fixed within tolerable time?

⚫ What is our plan B if there is no new update?

Engineers

Classification: PUBLIC

Solution

Classification: PUBLIC

1. Know Your
Software

2. Identify Risks

3. Treat Risks 4. Control Software
Release

4 steps to the rescue

Classification: PUBLIC

Know Your Software
Software Bill of Materials (SBoM)

⚫ Contains vendor, component/dependency/module names and versions

⚫ Provides relations between the components (direct vs transitive)

⚫ License information

⚫ Vulnerability metadata (optional)

Classification: PUBLIC

Know Your Software
Software Bill of Materials (SBoM) - Standards

⚫ CycloneDX by OWASP and SPDX by Linux Foundation are two most acclaimed SBoM

open standards

⚫ They still evolve and have multiple flavours depending on the BoM purpose (security,

compliance, disclosure)

⚫ Machine-readable formats, commonly XML and JSON

https://cyclonedx.org/
https://spdx.dev/

Classification: PUBLIC

Know Your Software
Software Bill of Materials (SBoM) – Minimal common fields

The following attributes represent the essential elements required in an SBOM:

⚫ SBOM meta-information: Core data of the SBOM document itself, including author of the SBOM data, timestamp of its creation and the primary component being documented

⚫ Supplier name: The entity that creates, defines and manufactures the software component

⚫ Component name: The designated name of software component, assigned by the original supplier

⚫ Version of component: Captures version-specific changes to accurately track updates and modifications

⚫ Other unique identifiers: Includes reference types such as Common Platform Enumeration (CPE), SWID tags, or Package URLs (PURL) for precise component tracking

⚫ Cryptographic hash: A unique fingerprint for each software component that enables verification of integrity and precise identification

⚫ Dependency relationship: A structured map showing how components are interconnected, covering both direct and transitive dependencies

⚫ License information: Documentation of legal terms for supplied software components

⚫ Copyright notice: Entity holding exclusive and legal rights to the listed components

Classification: PUBLIC

Know Your Software
Software Bill of Materials (SBoM) - Standards

CycloneDX 1.6 SBoM

sample

SPDX 2.3 SBoM sample

Classification: PUBLIC

Identify Risks
SCA (Software Composition Analysis)

SCA

Identifies the list of open/third-party

components in your software (source-code or

binary)

Identifies security risks and provide the list of

known vulnerabilities including remediation

advice

Identifies licensing (compliance) risks

Identifies operational risks

Classification: PUBLIC

Treat Risks

Treating SBoM risks

⚫ Remove components which are not needed
at all (without breaking anything)

Treating security risks

⚫ Assess attack vectors and code reachability

⚫ Inputs: Threat model, source code,
knowledge base

Treating license risks

⚫ Evaluate/remove components with non-compliant
licenses

⚫ Inputs:

− Open-source compliance policy

− Product context

Treating operational risks

⚫ Evaluate/remove non-maintained
components

⚫ Inputs: Third-party use guidelines and
component monitoring

Classification: PUBLIC

Control Software Release

Be in control of the following gates in the SDLC:

⚫ Source code versioning

⚫ Software signing and verification

⚫ Binary artifactory pushes

⚫ Third-party (Supplier) software integrity

⚫ Open-source software consumption

⚫ Production software deployment and

monitoring

Source: SLSA

https://slsa.dev/spec/v1.1/threats-overview

Classification: PUBLIC

Beyond Open-Source Security:
Supply Chain Attacks

⚫ A fascinating and complex security attack vector

⚫ Between 2019 and 2022, software supply chain

attacks skyrocketed by an astounding 742%

⚫ Securing your product is not enough, you also

need to secure its pre-production environment

(Dev, Test, PreProd)

Classification: PUBLIC

Approaches

Classification: PUBLIC

Common manual approaches

Classification: PUBLIC

Common automated approaches

Advantages

• Finds some publicly known and unknown security vulnerabilities in the
source code

• No additional tool/testing stage needed

• SAST can be performed in various pipeline stages

• SAST tools can have a separate module that inspects software
composition

Disadvantages

• Limited insight into Software Composition Analysis

• No Software Bill of Material

• No licensing information

Static Application Security Testing (SAST)

SAST

⚫ Analyzes any source code,

not only FOSS specific

⚫ Finds common vulnerability

patterns such as:

⚫ SQL injection

⚫ Cross-site scripting

⚫ Buffer overflows, etc.

Classification: PUBLIC

Common automated approaches

Advantages

• Finds both publicly known and unknown security vulnerabilities

• No additional tool/testing stage needed

• Fewer false positives than SAST because it focuses on exposed
components

Disadvantages

• Less comprehensive than repository scans as it examines running software
from outside

• Runs later in a later pipeline stage

• Very incomplete Bill of Material

• No licensing information

• Results represent a point in time

Dynamic Application Security Testing (DAST) + penetration testing +

vulnerability scanning

Dynamic testing

⚫ Tests running apps

automatically

(DAST/vulnerability

scanning) and manually

(pentest)

⚫ Finds flaws,

misconfigurations and

vulnerabilities in apps

Classification: PUBLIC

Common automated approaches
Advantages

• Examines open-source components automatically

• No triggered scan needed

• Seamless integration

• Often easy remediation in the repository via pull request

• Continuous monitoring

Disadvantages

• Focus on dependencies but no code snippets or modified files/directories

• Basic license compliance

• Could miss relevant or catch non-relevant dependencies which would not
be deployed into the product release

• Project-level (developer-friendly) view only

⚫ Built-in functionality

⚫ Runs regularly

⚫ Creates pull requests

Source Code Repository Checks

Classification: PUBLIC

Common automated approaches
Source Code Repository Checks - Example

GitHub Dependabot

Classification: PUBLIC

Common automated approaches
Advantages

• Could be one catch-for-all: Examines all binary components known for
open-source vulnerabilities before deployment including container images

• Easy access to artifacts

• Can be triggered on-demand or automatically when new artifacts appear

• Easy implementation of approved artifacts only (due to licensing,
whitelisting,…)

• Easy integration + Continuous analysis

Disadvantages

• Coverage is not always that strong for the compiled code (C/C++ in
particular)

• Basic license compliance information

Binary Repository Checks

⚫ Built-in functionality

⚫ Triggered for each new

artifact in the repository

Classification: PUBLIC

Common automated approaches
Binary Repository Checks - Examples

Xray JFrog Sonatype Lifecycle

Classification: PUBLIC

Common automated approaches
Advantages

⚫ Detailed information on open-source risks

⚫ Few false positives due to several ways of identifying open-source
components

⚫ Both compiled and uncompiled code can be analysed

⚫ Usually faster in scanning FOSS components than SAST/DAST

⚫ Can detect code snippets

⚫ Most solutions offer monitoring purposes

Disadvantages

⚫ Creates overhead by implementing another testing step

⚫ Does not find publicly unknown vulnerabilities, so need to be complemented
with SAST/DAST

SCA standalone

⚫ Designed for open-source

scanning

⚫ Provides Bill of Material

⚫ Can have dedicated

database vulnerabilities

⚫ Monitors for new

vulnerabilities

⚫ Some solutions can find

copied code snippets

Classification: PUBLIC

Common automated approaches
SCA standalone testing – OWASP tooling (1/2)

OWASP Dependency Check

⚫ Is a standalone analyzer-checker

⚫ Can be easily integrated in a CI/CD

pipeline

⚫ Provides list of components, security

vulnerabilities

Classification: PUBLIC

Common automated approaches
SCA standalone testing – OWASP tooling

OWASP Dependency Track

⚫ Acts as a platform

⚫ Allows for monitoring

⚫ Powerful vulnerability

intelligence:

⚫ Integrates with the EPSS

(Exploit Prediction

Scoring System)

vulnerability model

⚫ In addition to NVD

information

(vulnerabilities), takes

input from OSV (Open-

source vulnerability)

database (malicious

pgs), GitHub Security

Advisories and VulnDB

Classification: PUBLIC

Common automated approaches
Open-source license compliance tool examples

OSS Review Toolkit Fossology

https://github.com/oss-review-toolkit/ort
https://www.fossology.org/

Classification: PUBLIC

Common automated approaches
Integration

Source code repository

checks

Binary repository checks

Standalone SCA

Classification: PUBLIC

Q&A

Thanks for your attention!

	Slide 1
	Slide 2: Goals
	Slide 3
	Slide 4: Introduction
	Slide 5: Open-source risks in 2024
	Slide 6: Have you heard yet?
	Slide 7: Where it comes from?
	Slide 8
	Slide 9: 1. Know my assets
	Slide 10: 2. Know my security risks
	Slide 11: 3. Know my legal risks
	Slide 12: 3. Know my legal risks
	Slide 13: 4. Operational risks
	Slide 14
	Slide 15: 4 steps to the rescue
	Slide 16: Know Your Software
	Slide 17: Know Your Software
	Slide 18: Know Your Software
	Slide 19: Know Your Software
	Slide 20: Identify Risks
	Slide 21: Treat Risks
	Slide 22: Control Software Release
	Slide 23: Beyond Open-Source Security: Supply Chain Attacks
	Slide 24
	Slide 25: Common manual approaches
	Slide 26: Common automated approaches
	Slide 27: Common automated approaches
	Slide 28: Common automated approaches
	Slide 29: Common automated approaches
	Slide 30: Common automated approaches
	Slide 31: Common automated approaches
	Slide 32: Common automated approaches
	Slide 33: Common automated approaches
	Slide 34: Common automated approaches
	Slide 35: Common automated approaches
	Slide 36: Common automated approaches
	Slide 37: Q&A

