Navigating through the

UU.JHSD Open-source Secu rity Eﬂt:ynzliL?\z/oggvak
@ risks

Classification: PUBLIC

G Goals

« Understand the open-source software risk complexity
« Understand how solutions looks like

« Review your current approach for your environment or prepare guestions
to find out more ——

« Share your experience In treating open-source risks with us! sEEREE:

Agenda

Introduction

Motivation

Solution

Approaches
. Q&A

Disclaimer:
“This is my personal presentation and represents neither my current employer nor any
other organization.”

Classification: PUBLIC

‘Security

« Worked in various organizations in Luxembourg and Germany before
coming to Czech Republic

at a Czech bank =

% QOpen-source risks in 2024

-
1 ,658 projects scanned by Black Duck audits

970‘6 of the codebases contained open source

70% of scanned code had its origin in open source

—
Vulnerabilities and Security

86%

of risk-assessed
cadebases centained
vulnerable open source

[+
81%
of risk-assessed
codebases contained
high- or critical-risk
vulnerabilities

8 of the
top 10

high-risk vulnerabilities
were found in jQuery

Source: Black Duck OSSRA Report 2025

Components Percentage of codebases containing the component A
jQuery 2%
jQuery U 16%
Bootstrap [Twitter) 15%
Spring Framework 12%
Lodash 12%
Metty Project 11%
jackson-databind 9%
Apache Tomcat 8%
Python prograrmming language 2%
TensorFlow 1%
V.

Classification:-PUBLIG.

https://news.blackduck.com/2025-02-25-New-Black-Duck-Report-86-of-Commercial-Codebases-Contain-Vulnerable-Open-Source,-Exposing-Organizations-to-Security-Risks

Have you heard yet?

SECURITY NEWS SECURITY NEWS
60 Malicious npm Packages Leak Network Typosquatted Go Packages Deliver Malware
and Host Data in Active Malware Campaign Loader Targeting Linux and macOS Systems
Socket's Threat Research Team has uncovered 60 npm packages using Malicious Go packages are impersonating popular libraries to install hidden
post-install scripts to silently exfiltrate hostnames, IP addresses, DNS loader malware on Linux and macOS, targeting developers with obfuscated
servers, and user directories to a Discord-controlled endpoint. payloads.

May 2025 March 2025
Malicious npm Packages Attacking Linux Critical Flaw in Apache Parquet Allows Remote Attackers to Execute Arbitrary

Developers to Install SSH Backdoors Code
Fy Tusher umhra putta - fpri B2 Apr04,2025 & Ravie Lakshmanan Vulnerability / Cloud Security
April 2025 April 2025

Classification:-PUBLIG.

Where it comes from?

Open source enters your code through many channels...

APPROVED COMPONENTS

DEVELOPER DOWNLOADS

OPEN SOURCE CODE
COMMERCIAL APPS
THIRD PARTY LIBRARIES
OUTSOURCED DEVELOPMENT
... and it also brings its specific risks ,‘ ‘

CIassificatioﬁ':@BL.It’y

Challenges

1. Know my assets

« | need further information to our application inventory...
« How much open-source software do we use?

. How is the use of open-source software governed in our organisation?

Software Bill of Materials

ClO

CIassificatioﬁ':@BL.It’y

2. Know my security risks

Which our products have open-source vulnerabilities?

Do we have any components with critical and high vulnerabilities?
Which our projects have the XXX vulnerable component?

How do we recognize vulnerable and/or malicious components?

OWASP TOP 10
A06:2021 Vulnerable and Outdated Components

CISO/Security

CWE-937 OWASP Top 10 2013: Using Components with Known Vulnerabilities Manager

CWE-1035 2017 Top 10 A9: Using Components with Known Vulnerabilities

CWE-1104 Use of Unmaintained Third Party Components

Classification:-PUBLIG.

3. Know my legal risks

. Are we legally allowed to deploy/distribute our software with its current open source?

. Do we have any open-source licenses non-compliant with our internal policy?

. Are any open-source licenses contradictory?

2017 - Artifex Software, Inc. versus Hancom, Inc.

Artifex Software Hancom Inc.
i |.| &
Compliance team
- 1. Developed open-source PDF interpreter - 3. Used the interpreter in the commercial Office software
- 2.The interpreter has a dual license: either GPL or commercial - 4. Hancom neither paid for the commercial license nor published

the custom software as open-source -> license infringement

se 0
\ﬂﬂ NS Vizio sued by nonprofit to share code for
__ open-source software

By Blake Brittain S .:._
US District Court | R][R [<] ey

October 20, 2021 6:06 PM GMT+2 - Updated 3 years ago

5. GPL can be treated like a legal contract

Classification:-PUBLIG.

3. Know my legal risks

Licensing Scheme License Family Examples Risk Level
Copyleft Affero General GNU Affero General Public License v3 or |Very High
Public License later
(AGPL)
Copyleft Reciprocal GNU General Public License (GPL) 2.0 or |High
3.0
Sun GPL with Classpath Exception v2.0
Copyleft Weak reciprocal Code Project Open License 1.02 Medium
Common Development and Distribution
License (CDDL) 1.0 0r 1.1
Eclipse Public License
GNU Lesser General Public License
(LGPL) 2.1 0r 3.0
Microsoft Reciprocal License Mozilla
Non-commercial use | Non-commercial Aladdin Free Public Licens (AFPL) Very High
Java Research License (JRL)
Copyright (©) N/A Very High

Classification:-PUBLIG.

4. Operational risks

. How well is the component maintained by the community?
Are security vulnerabilities/bugs fixed within tolerable time?

What is our plan B if there is no new update?

70% of open-source components
are poorly or no longer maintained

Englneers

Classification:-PUBLIG.

Solution

4 steps to the rescue

1. Know Your 2. Identify Risks

Software

3. Treat Risks 4. Control Software
Release

Classification: PUBLIC

Know Your Software

Software Bill of Materials (SBoM)

Contains vendor, component/dependency/module names and versions
Provides relations between the components (direct vs transitive)
License information

Vulnerability metadata (optional)

Classification:-PUBLIG.

Know Your Software

Software Bill of Materials (SBoM) - Standards

CycloneDX by OWASP and SPDX by Linux Foundation are two most acclaimed SBoM
open standards

They still evolve and have multiple flavours depending on the BoM purpose (security,
compliance, disclosure)

Machine-readable formats, commonly XML and JSON

Classification:-PUBLIG.

https://cyclonedx.org/
https://spdx.dev/

Know Your Software
Software Bill of Materials (SBoM) — Minimal common fields

The following attributes represent the essential elements required in an SBOM:

« SBOM meta-information: Core data of the SBOM document itself, including author of the SBOM data, timestamp of its creation and the primary component being documented
« Supplier name: The entity that creates, defines and manufactures the software component

. Component name: The designated name of software component, assigned by the original supplier

. Version of component: Captures version-specific changes to accurately track updates and modifications

. Other unique identifiers: Includes reference types such as Common Platform Enumeration (CPE), SWID tags, or Package URLs (PURL) for precise component tracking

. Cryptographic hash: A unique fingerprint for each software component that enables verification of integrity and precise identification

&
0@

. Dependency relationship: A structured map showing how components are interconnected, covering both direct and transitive dependencies «\o‘\s“o
1 - -
cx\e-c’o LAY LI
93 . .

. Licenseinformation: Documentation of legal terms for supplied software components “eo|°‘%'

02 . A
Q\‘%‘ w's .
« Copyright notice: Entity holding exclusive and legal rights to the listed components . o

Classification:-PUBLIG.

CycloneDX 1.6 SBoM

Know Your Software

Software Bill of Materials (SBoM) - Standards

first-party appli

tion in this example

"SPDXID" : "SPDXRef-DOCUMENT",
"spdxVersion" : "SPDX-2.3",
"creationInfo™ : {
"comment” : "This package has been shipped in source and binary form.\nThe binaries were created with gcc 4.5.1 and expect to link to‘\ncompatible
"created” : "2019-81-29T18:3@:22Z",
"creators" : ["Tool: LicenseFind-1.8", "Organization: ExampleCodelnspect ()", "Person: Jane Doe ()" 1,
"licenselistVersion® : "3.17"

"SPDX-Tools-v2.8",
"CCe-1.8",

+ "This document was created using SPDX 2.8 using licenses from the web sit

“externalDocumentRefs™ : [{

"externalDocumentId” : "DocumentRef-spdx-tool-1.2",
"checksum" : {

"algorithm" : "SHA1",

"checksumValue” : "d6a778ba38583ed4bb4525bdI6e58461655d2759"

"spdxDocument” : "http://spdx.org/spdxdocs/spdx-tools-vl.2-3F2504E0-4F89-41D3-9ABC-0305E82C3301"
YL

"hasExtractedLicensingInfos™ : [

enseld

"extractedText™ : "/*\n ¥ (c) Copyright 2098, 2001, 2092, 2983, 2004, 2005, 2006, 2007, 2088, 2009 Hewlett-Packard Development Company, LP\n ¥ ALl

LicenseRef-1",

enseld" : "LicenseRef-2",

"extractedText” : "This package includes the GRDDL parser developed by Hewlett Packard under the following license:\n® Copyright 2807 Hewlett-Pact

"LicenseRef-4",

"extractedText™ : "/*\n # (c) Copyright 2089 University of Bristolin * All rights reserved.\n *\n * Redistribution and use in source and binary fc

icenseld” : "LicenseRef-Beerware-4.2",

"comment" : "The beerware license has a couple of other standard variants.”,

"extractedText™ : "\"THE BEER-WARE LICENSE\" (Revision 42):\nphk@FreeB5D.0RG wrote this file. As long as you retain this notice you\ncan do whate

name" : "Beer-Ware License (Version 42)",

"seeAlsos” : [“http://people.freebsd.org/~phk/"

SPDX 2.3 SBoM sample e
Classification::PUBLIG

ldentify Risks

SCA (Software Composition Analysis)

Identifies the list of open/third-party

components in your software (source-code or dentifies licensing (compliance) risks

binary)

Identifies security risks and provide the list of Identifies operational risks
known vulnerabilities including remediation

advice

Classification:-PUBLIG.

Treat Risks

Treating SBoM risks

Remove components which are not needed
at all (without breaking anything)

Treating security risks
Assess attack vectors and code reachability

Inputs: Threat model, source code,
knowledge base

Treating license risks

Evaluate/remove components with non-compliant
licenses

Inputs:
- Open-source compliance policy

- Product context

Treating operational risks

Evaluate/remove non-maintained
components

Inputs: Third-party use guidelines and
component monitoring

Classification:-PUBLIG.

Control Software Release

Be in control of the following gates in the SDLC: S o
B
. Source code versioning erocucor | sowee |+ outa)+ | olsisuton |+ consumer

. Software signing and verification

Dependencies

. Binary artifactory pushes Gy TS

A Producer (entity) D External build parameters G Distribution channel
. Third-party (Supplier) software integrity S cete mraent ot paesion
« Open-source software consumption Source: SLSA

« Production software deployment and
monitoring

Classification:-PUBLIG.

https://slsa.dev/spec/v1.1/threats-overview

Beyond Open-Source Security:

Supply Chain Attacks

A fascinating and complex security attack vector

Between 2019 and 2022, software supply chain
attacks skyrocketed by an astounding 742%

Securing your product is not enough, you also
need to secure its pre-production environment
(Dev, Test, PreProd)

What is SLSA?

Supply-chain Levels for Software Artifacts, or SLSA (“salsa”), is a set of incrementally adoptable guidelines for supply chain
security, established by industry consensus. The specification set by SLSA is useful for both software producers and
consumers: producers can follow SLSA's guidelines to make their software supply chain more secure, and consumers can use
SLSA to make decisions about whether to trust a software package.

SLSA offers:

= A common vocabulary to talk about software supply chain security
« A way to secure your incoming supply chain by evaluating the trustworthiness of the artifacts you consume
« An actionable checklist to improve your own software’s security

« A way to measure your efforts toward compliance with the Secure Software Development Framework (SSDF)

Track/Level Requirements Focus
Build LO (none) (n/a)
Build L1 Provenance showing how the package was built Mistakes, documentation
Build L2 Signed provenance, generated by a hosted build platform Tampering after the build
Build L3 Hardened build platform Tampering during the build
I
- - ‘.

Classification:-PUBLIG.

Approaches

Common manual approaches

SPREADSHEET INVENTORY

+ Requires consistent developer input
+ Difficult to maintain and scale

MANUAL DISCOVERY

* Cumbersome processes

+ QOccurs at end of SDLC
* Not a full/accurate list of actual usage

* High effort and low accuracy
* No ongoing controls

#HFAIL

SPORADIC VULNERABILITY PERIODIC VULNERABILITY
TRACKING SCANNING

* Monthly/quarterly vulnerability assessments
+ Not aimed at open source vulnerabilities
* Integrated later in the SDLC

* No single responsible entity

+ Labor intensive manual effort
* Unmanageable (~11 new vulns/day)

Classification:-PUBLIG.

9 W
¢ e

Common automated approaches

Static Application Security Testing (SAST)

Analyzes any source code,

not only FOSS specific
Finds common vulnerability
patterns such as:

« SQL injection

« Cross-site scripting

« Buffer overflows, etc.

Advantages

Finds some publicly known and unknown security vulnerabilities in the
source code

No additional tool/testing stage needed
SAST can be performed in various pipeline stages

SAST tools can have a separate module that inspects software
composition

Disadvantages
« Limited insight into Software Composition Analysis

* No Software Bill of Material ‘ ¢
@

CIassificatioﬁ':@BL.I(i

* No licensing information

9 W
¢ e

Common automated approaches

Dynamic Application Security Testing (DAST) + penetration testing +
vulnerability scanning

Tests running apps

automatically
(DAST/vulnerability

scanning) and manually

(pentest)
Finds flaws,
misconfigurations and

vulnerabilities in apps

Advantages

Finds both publicly known and unknown security vulnerabilities

No additional tool/testing stage needed

Fewer false positives than SAST because it focuses on exposed
components

Disadvantages

Less comprehensive than repository scans as it examines running software
from outside

Runs later in a later pipeline stage

* Very incomplete Bill of Material ‘ aras
i L
No licensing information ‘ ‘

Results represent a point in time CIassificatioﬁ':@BLllé".

Common automated approaches

Source Code Repository Checks Advantages

» Examines open-source components automatically
* No triggered scan needed

« Built-in functionality + Seamless integration

« Runs regularly

« Often easy remediation in the repository via pull request

. Creates pull requests
» Continuous monitoring

Disadvantages
» Focus on dependencies but no code snippets or modified files/directories

« Basic license compliance

b

+ Could miss relevant or catch non-relevant dependencies which would not .
be deployed into the product release Sl aTals
9

* Project-level (developer-friendly) view only Classificati or.f:aBL'I C‘

Common automated approaches

Source Code Repository Checks - Example

Command Injection in Xstream #36

Opened yesterday on com.thoughtworks.xstream:xstream (Maven) - pom.xml|

[[D Upgrade com.thoughtworks.xstream:xstream to fix 37 Dependabot alerts in pom.xml

Upgrade com.thoughtworks.xstream:xstream to version 1.4. 21 or |ater. For example:

<dependency>
<groupId>com. thoughtworks . xstream</groupIds
<artifactIdsxstream</artifactId»
<version>[1.4.21,)</version>

</dependency>

{3 Create Dependabot security update

Package Affected versions Patched version

) com.tt ks.xstream: (Maven) < 1.4.7 1.4.7 0

Xstream AP| versions up to 1.4.6 and version 1.4.10, if the security framework has not been initialized, may allow a
remote attacker to run arbitrary shell commands by manipulating the processed input stream when unmarshaling XML
or any supported format. e.g. JSON.

Dismiss alert ~

Severity

9.8/10

CVSS v3 base metrics
Attack vector

Attack complexity
Privileges required
User interaction
Scope

Confidentiality
Integrity

Availability

Learn more about base metrics

Network
Low

None
Nene
Unchanged
High

High

High

CVSS:3.0/AV:N/ACLPRN/ULN/SU/CH/HAAH

EPSS score
6.686% (90th percentile)

GitHub Dependabot

Dependency graph

Dependencies Dependents Dependabot

Automatically detect additional dependencies for Maven

Enable automatic dependency submission to automatically identify and submit transitive dependencies to
GitHub, so you can receive Dependabot alerts for known vulnerabilities in them.

Q Search all dependencies

£ 90 Total

com.thoughtworks.xstream:xstream 1.4.s

Maven - pom.xml - Detected automatically on Apr 0 NOASSERTION

org.bitbucket.b_cjosedj o.9.3

Maven - pom.xml - Detected automatically on Apr 01 5. Apache-2.0

actions/checkout =.1.6

/buildyml - Detected automatically on Apr 01, 2025

GitHub Actions - .github/workflov

actions/setup-java 4.+.+

GitHub Actions - .github/workflows/build.yml - Detected automatically on Apr

&, Export SBOM

Ecosystem -

@ 2 critical ~

© 1moderate ~

CIassification::E;UBL.IG /

Common automated approaches

Binary Repository Checks

Advantages

* Could be one catch-for-all: Examines all binary components known for
open-source vulnerabilities before deployment including container images

» Easy access to artifacts

« Built-in functionality

. Triggered for each new + Can be triggered on-demand or automatically when new artifacts appear

artifact in the reposito
P ry » Easy implementation of approved artifacts only (due to licensing,

whitelisting,...)
« Easy integration + Continuous analysis
Disadvantages

+ Coverage is not always that strong for the compiled code (C/C++ in
particular)

+ Basic license compliance information ' “

CIassificatioﬁ':@BL.I(i

Xray » ScanslList >

docker-trial
Palicy Vinlatians
SEOM

W Securlty Issues.

Mascious Packiges

Applications

Descendants

Ancestors

Common automated approaches

Binary Repository Checks - Examples

docker-trial > exposures/latest

179 Vulnerabilities

Sowity v D %

L] CVE-2020-1747 &
CVE-2021-35042 &
CVE-2020-14343 &
XRAY-94986
CVE-2018-20060 &
CVE-2022-41902
CVE-2022-41910

CVE-2022-41880

CVE-2022-41900

Xray JFrog

@ CVE-2020-1747 &

Show Less

Summary

Remnadiat

org.xmlunit : xmlunit-core : 2.9.1
[e |]
AT 1/ ansiive Dependency

PREMAVENOrE Kmiunit/smiund <ore®2 9. 1 iypesjar ©

Component Summary

Highest CVSS Score Vulnerabilities Verified

o LA

Disclosed Vulnerabilities

CVSS SCORE & 155U VERIFIED STATUS

oo (V20243 (]

@ Mot AfMected

I Additional Sonatype Identified Vulnerabilities

Sonatype Lifecycle

JUSTIFICATION

woatyon

Classification®

9 W
¢ e

SCA standalone

Designed for open-source

scanning

Provides Bill of Material
Can have dedicated
database vulnerabilities
Monitors for new
vulnerabilities

Some solutions can find

copied code snippets

Common automated approaches

Advantages
Detailed information on open-source risks

Few false positives due to several ways of identifying open-source
components

Both compiled and uncompiled code can be analysed
Usually faster in scanning FOSS components than SAST/DAST
Can detect code snippets

Most solutions offer monitoring purposes

Disadvantages
Creates overhead by implementing another testing step ‘ ,‘

Does not find publicly unknown vulnerabilities, so need to be complemented ‘ >
with SAST/DAST

CIassificatior}':@BLllti

Common automated approaches

SCA standalone testing — OWASP tooling (1/2)

How to read the report | Suppressing false positives | Getting Help: github issues

(3 Spensor

Project:

Scan Information (show all)

dependency-check version: 12.1.1

Report Generated On: Mon, 26 May 2025 21:31:24 +0200
Dependencies Scanned: 318 (280 unique)

Vulnerable Dependencies: 20

Vuinerabilities Found: 94

Vulnerabilities Suppressed: 0

Summary

Display: Showing Vulnerable Dependencies (click to show all)

Dependency Vulnerability IDs Package Highest Severity CVE Count Confidence Evidence Count
webgoat jar- bootstrap-5 3.3 jar pkg:maven/org.webjarsibootstrap@5.3.3 MEDIUM 1 20

webgoat jar: bootstrap.min.js pkg:javascriptbootstrap@3.1.1 MEDIUM 9 3

webgoat jar: bootstrap.min js pkg:javascripthootstrap@3 1.1 MEDIUM 9 3

webgoat jar jwt-0.9 1 jar cpe2 Jajson web token projectjson web token:091******* pkgmavenfio jsonwebtoken/jjwt@0.9.1 MEDIUM 1 High 26

cpe:2 Jaweb_projectweh0.9 1= ="

webgoat jar: jose4j-0.9.3.jar cpe:2 3ajosed] projectjosedj0.9.3: 2551 pkg:maven/org.bitbucketh cfiesedj@0.9.3 MEDIUM 1 Highest 38

webgoat jar: jquery-1.10.2 min js pkgjavascriptjquery@1.10. 2 min MEDIUM® 5 3

webgoat jar: jquery-2.1.4 min js pkajavascriptjquery@2.1.4. min MEDIUM* 5 3

wehaoat iar iguery-ni-1 10 4 custom min i nkari i li-dials 1104 MEDILIM 5 Ly

Is a standalone analyzer-checker

Can be easily integrated in a CI/CD
pipeline

Provides list of components, security
vulnerabilities

OWASP Dependency Check

Classification:-PUBLIG.

Common automated approaches

SCA standalone testing — OWASP tooling

& OWASP WebGoat ~ 0.1 . Acts as a platform
« Allows for monitoring

. Powerful vulnerability
intelligence:
|+ Overview 62 0 1) 28 0 0 . Integrates with the EPSS

(Exploit Prediction

Project Vulnerabilities

Scoring System)
vulnerability model

. Inaddition to NVD
information
(vulnerabilities), takes
input from OSV (Open-
source vulnerability)
database (malicious
pgs), GitHub Security
Advisories and VulnDB

OWASP Dependency Track Cele e

Classification:-PUBLIG.

Common automated approaches

Open-source license compliance tool examples

Open Source License
Compliance by Open
Source Software

A >

A suite of CLI tools to automate software compliance checks. f 0 S S 0 l 0 g y

Also available as a server.

OSS Review Toolkit Fossology

https://github.com/oss-review-toolkit/ort
https://www.fossology.org/

Common automated approaches

Integration

Application security pipeline

SAST SCA IAST DAST

I Development

Operations
production —

Classification::PUBLIG

oun

Thanks for your attention!

Classification: PUBLIC

	Slide 1
	Slide 2: Goals
	Slide 3
	Slide 4: Introduction
	Slide 5: Open-source risks in 2024
	Slide 6: Have you heard yet?
	Slide 7: Where it comes from?
	Slide 8
	Slide 9: 1. Know my assets
	Slide 10: 2. Know my security risks
	Slide 11: 3. Know my legal risks
	Slide 12: 3. Know my legal risks
	Slide 13: 4. Operational risks
	Slide 14
	Slide 15: 4 steps to the rescue
	Slide 16: Know Your Software
	Slide 17: Know Your Software
	Slide 18: Know Your Software
	Slide 19: Know Your Software
	Slide 20: Identify Risks
	Slide 21: Treat Risks
	Slide 22: Control Software Release
	Slide 23: Beyond Open-Source Security: Supply Chain Attacks
	Slide 24
	Slide 25: Common manual approaches
	Slide 26: Common automated approaches
	Slide 27: Common automated approaches
	Slide 28: Common automated approaches
	Slide 29: Common automated approaches
	Slide 30: Common automated approaches
	Slide 31: Common automated approaches
	Slide 32: Common automated approaches
	Slide 33: Common automated approaches
	Slide 34: Common automated approaches
	Slide 35: Common automated approaches
	Slide 36: Common automated approaches
	Slide 37: Q&A

