
SAST Essentials

Matěj Smyčka

OWASP meetup 14.11.2024 1



whoami
- Penetration tester at CSIRT Masaryk University
- I wrote thesis on SAST tools and few guides how to use them.
- I like to program things :)

2



Goal of this presentation
- Introduce SAST
- Show different categories of SAST tools 
- Present how are we using SAST
- Share our experience 

3



What is SAST?
̶ Static Application Security Testing (SAST)
̶ Source code approach
̶ Source code meaning any text

̶ Config files
̶ Dependency files (requirements.txt, packages.json, …)
̶ IaC code (Terraform, Kubernetes, Dockerfiles, …)
̶ Source code

̶ In theory: symbolic execution, bounded model checking, taint analysis, …
̶ In reality (mostly): regex
̶ Typically for AppSec

4



Our problem
1. We catch vulnerabilities too late in SDLC
2. “Reading” code in whitebox pentesting is repetitive
3. Need to improve AppSec of our own tooling

5



Solution - SAST
We catch vulnerabilities late in SDLC

- “Shift-left” approach

- SAST integration into CI/CD pipelines

- Recommending SAST scans before penetration test

Automate “reading” code in whitebox pentesting

- Running SAST scans so we know what to look for

- Speeding up pentest

Need to improve AppSec of our own toolin

- Using SAST so we know what we are recommending

- At Least some baseline for security

6



SAST categories and tooling

- Vulnerability detection

- Secret detection

- Dependency scanning

- IaC SAST

7



Vulnerability detection

̶ Catching command injection, SQLi, unsecure crypto, …
̶ Regex + abstract syntax tree (AST)
̶ Tools like Semgrep, Bandit, SonarQube …

8



Secret detection

̶ Looking for secrets (API keys, tokens, ssh keys) in text
̶ Tools like Gitleaks, Trufflehog or just grep.
̶ FPs vs FNs
̶ Git commit history
̶ Logs

9



Dependency scanning

̶ Dependency files (requirements.txt, packages.json, Dockerfile…)
̶ Parse dependency files -> Compare versions to vulnerability DB -> yield result
̶ Tools like Grype, Renovate, Dependabot, nmp audit, DependencyCheck …
̶ Autofix features
̶ SBOM

10



Infrastructure as a Code (IaC) SAST
̶ Looking for misconfigurations in:

̶ Terraform (Terrascan, Checkov)
̶ Dockerfile (Hadolint, Grype)
̶ Kubernetes/Helm Charts (Terrascan, Checkov)

̶ Not as useful for pentests
̶ Good for checking best practises

11



SAST for development
̶ Deployment:

̶ Integration with pipelines
̶ pre-commit hooks
̶ Manual checks

̶ Useful tips:
̶ Select tools based on where you host your code (Github, Gitlab, Bitbucket ..)
̶ Setup auto-fix on dependency scanning (Renovate, Dependabot)
̶ Do not use GitLab built-in SAST only
̶ Use Security dashboard on Gitlab.

12



SAST for penetration testers

̶ Catch low hanging fruits
̶ Create your own rules
̶ High FPs, Lower FNs than in development
̶ Scan manually before each pentest
̶ Automate repetitive tasks

̶ Like Ansible to get APT packages and their CVEs

13



SAST limitations
̶ SAST won’t solve everything, no silver bullet :(
̶ Typically can’t see access control vulns like IDOR.
̶ Higher overhead (Dealing with False Positives).

14



SAST future

̶ LLMs
̶ Detecting vulnerabilities
̶ Writing templates based on our input

̶ Each git hosting service is doing “their” own solution
̶ GitHub Advanced Security (GHAS)
̶ Gitlab SAST

15



Thank you for the attention

Any questions?

Contact me on LinkedIn - Matěj Smyčka

We also do Hacker MEETUPs

Contact: tomci@ics.muni.cz

16


