
Archetypal Secure Application
Design Patterns: The Next Evolution

-Or-
Layered Pattern Stacks as Code

(LPSaC)
BY JOE GERBER

HISTORY@FRII.COM

1/20/2021

Special Thanks to Absent Friends:
Christian Price
(@DevSecOpsXian)

Cloud Security Architect
CISSP, CISM, CISA

Jay Reynolds
(---)

Application Security Program Lead
CISSP

Chris Wells, RIP
(---)

Application Security Architect
CISSP

Of Note:
The content of this presentation represents a synthesis of our collected experience

and opinions, informed by the experience and opinions of the many humans whom
have influenced our journey. To all these humans and experiences we are grateful.

To be clear, this presentation does not represent any of our employers, past or
present, and we are grateful to our employers’ support for our independent
community contributions such as this.

The Problem: how to effectively << shift left
How many times have you seen something during a security evaluation that makes you shake your
head?

Do you find yourself saying “if only they had involved us sooner…”?

But what does it really mean to shift left?

The current trend is towards earlier integration of better security testing during CI/CD → earlier
feedback is better.

We constantly want to be engaged at the design phase, but security teams can’t scale and become a
bottleneck

We are missing a huge opportunity to influence design by speaking the language of patterns

Plan Design Build Test Accept Deploy

Goals / Objectives
Amplify software architecture & design as a critical element of AppSec

Communicate relevance & importance of patterns in context of microservices

Articulate some modern design principles

Illustrate an approach to building a pattern catalog

Help others on the journey

Inspire engagement and contribution

Using patterns to shift security left

This is a journey, We are by no-means ‘done’ with this topic following this talk.
This is an area of continuing passion, inquiry, research, and advocacy for us.

Our Iterative Approach:
1. Propose a set of software architecture and software design patterns at various levels of

detail

2. Subject those patterns to rigorous analysis, including:
◦ Threat Modeling

◦ Attack Map / Analysis

◦ Live attack trial implementation (RedTeam, Pen Test, etc. – pick your favorite terminology for an
intelligent unbounded attacker)

◦ Other analysis approaches we may not have thought of here

3. Learn from the results

4. Goto (1)

Scope of this presentation:
Survey / Review common architecture patterns:

◦ applications/software
◦ infrastructure/deployment

Show how they are broadly applicable
◦ One interesting test: can the patterns secure some of the riskiest apps?

Show the world as it looks to software and software creators:
◦ The context in which the software exists
◦ The other systems with which the software interacts, and the AppSec responsibilities of each
◦ The components of the software, and the AppSec responsibilities of each
◦ How to meet those responsibilities

Patterns
Provide reusable solutions to common problems

Provide a consistent language to communicate about solution composition

Can be assessed for weaknesses and improved

Consider other fields of engineering

Mechanical Electrical

Civil

✓ ✓

✓

But what of AppSec?

Lots of answers, and we keep making the same mistakes in new contexts

Many good Pattern Catalogs exist…

… but we need one focused on App Sec Design principles.

Again - Our Iterative Approach:
1. Propose a set of software architecture and software design patterns at various levels of

detail

2. Subject those patterns to rigorous analysis, including:
◦ Threat Modeling

◦ Attack Map / Analysis

◦ Live attack trial implementation (RedTeam, Pen Test, etc. – pick your favorite terminology for an
intelligent unbounded attacker)

◦ Other analysis approaches we may not have thought of here

3. Learn from the results

4. Goto (1)

Microservices & Patterns
We’ll look at several common patterns involved in:

The construction of a microservice

The way a set of microservices interact to form an application

How these patterns work together

A Layered Software
Architecture View
PROPOSED SECURE SOFTWARE DESIGN PATTERNS

Pattern-Zero
(point 1)

Problem: Software Suffers when Confusion
exists among Views at Different Altitudes

Solution: Provide consistency and coordination among these views.

Preferred solution: Make this consistency repeatable and automate it.

The Solution:
Layered Pattern Stacks as Code (LPSaC)
Use UML diagrams and Microsoft’s Layer diagram to flesh out where the security controls go
and how they work

Use automated tools (to be discovered/developed) to ensure consistency of the code with each
diagram

Now we can bring many groups into sync:
◦ Architects
◦ Developers
◦ Designers
◦ …

Layer Diagram:

See Farragher: https://training.mdfarragher.com/p/learn-how-to-become-an-outstanding-solution-architect

Diagram properties:
• A high-level system diagram showing

areas of concern.
• Proposed by Microsoft, not an official

UML diagram
Answers Question:
• What is the overall picture? Where

does the software live?
Serves Purpose:
• Depicts an overall map of the relevant

Software Entities in order to keep all
parties on the same page, and allow
ordering of any needed
infrastructure.

Microservice Layer Diagram
In

te
rn

et
w

eb
pr

es
en

ta
tio

n
lo

gi
c

da
ta

Clients of our
things

Other services & automation

Service/API Gateway

Presentation Server

Web Application

Session / State
Caching

Session State API

AUTHN
AUTHZ,

other
system-wide
components

µ-service 1 µ-service 2

Reverse Proxy

Define “Software Entities” or SW Entities

Examples:

web App

web service

mobile app

API Gateway

Database

Define Software Component
A (sometimes re-usable) “LEGO Block” of code that can be snapped together with other custom
or re-usable blocks of code to create a SW entity.

High Level App Sec functions of the Service
Gateway
(a.k.a. API Gateway)
Provides Security Services for microservices, such as :

◦ Single Entry Point patternà this is the only way in to the services

◦ Message-level validation

◦ Authorization:

◦ Is client authorized to talk to this microservice?

◦ Is this microservice authorized to talk to the other one?

Keeps the apps simpler, by presenting a secure façade, so the app just gets data—it doesn’t need to
interact directly with or even know about the horde of microservices.

Routes messages to microservices, maintains registry of microservices (”Server Side Discovery” with
“Service Registry” and “Self Registration.”)

Aggregates responses to client

Offloads communication and some configuration responsibilities to gateway instead of microservice

Logging, auditing, health checks of microservices

UML Sequence Diagram
Diagram properties:

Shows sequence of calls

Shows calling class, called method, and returned
type

Can depict loops

Answers Question:

How do SW Entities collaborate?

Serves Purpose:

Shows how interactions among different software
entities are coordinated to meet requirements for a
use case.

See Farragher: https://training.mdfarragher.com/p/learn-how-to-become-an-outstanding-solution-architect

Activity Diagram
Diagram Properties:

Shows process or workflow

Can show concurrent actions

Can be nested

Answers Question:

How do SW Entities collaborate?

Serves Purpose:

Shows how interactions among different software
entities are coordinated to meet requirements for a use
case.

See Farragher: https://training.mdfarragher.com/p/learn-how-to-become-an-outstanding-solution-architect

Component Diagram
Diagram Properties:

Shows components

Shows implemented and required interfaces

Components can be nested

Answers Question:

Of what custom or reusable LEGO Blocks is this Software
Entity composed?

Serves Purpose:

Shows the pieces of software within each entity and the
App Sec responsibilities of each.

See Farragher: https://training.mdfarragher.com/p/learn-how-to-become-an-outstanding-solution-architect

lo
gi

c
w

eb
/p

re
se

nt
a

tio
n

da
ta

Micro Service N

Each Micro Service communicates with all these things:

Data

Config

Central
Monitor

Tool

Micro Service 1 Micro Service 2

Data

Service Gateway

lo
gi

c
w

eb
/p

re
se

nt
a

tio
n

Look at the App Sec and communications responsibilities of
each component to help us map out its sub-components

Micro Service 1 Micro Service 2

Service Gateway

- Single Entry Point
- Incoming message validation
- Incoming message

Authorization
- Facade for the services below
- Message routing to services

- Requires router
- Requires Service Registry

- Response aggregation for client
- Handles functions common to all

services, such as:
- Audit Logging
- Possibly health checks on

services

- Simple API for limited set of closely related functions
- Low-level contextual Input validation and Authorization
- Communications to: other services, Service Gateway, config, logging, data store…

Create components to deliver on each set of responsibilities:

M
icr

o
Se

rv
ice

 n

Service GatewayConfig

Data Central Monitor Tool

M
icr

o
 S

er
vi

ce
 1

Ambassador

Cross-Cutting Concerns:
- Logging
- Config reading
- Self registration

Microservice-specific
Code

Config

w
eb

/p
re

se
nt

at
io

n

Se
rv

ice
 G

at
ew

ay

Secure Routing and Aggregation

Co
m

m
un

ica
tio

ns

API Gateway COMPONENT MAP
lo

gi
c

Config

Micro Service 2

Secure Service Facade

Message Validator

Secure Router

Security Service
Facade

Audit Interceptor

AUTHN
AUTHZ

Service Registry
Config

Logs

Policy delegate

Config Reader

Micro Service nMicro Service 1

lo
gi

c
w

eb
/p

re
se

nt
at

io
n

da
ta

Data

Config

Central Monitor Tool

M
ic

ro
 S

e
rv

ic
e

 1

Data

Se
rv

ice
 G

at
ew

ay
Secure Service Facade

Secure Input Message Validation/Authorization

Secure Microservice Message Routing

and Aggregation

Cross Cutting

Concerns &

Communication

with other

Components

AUTHN

AUTHZ

Config

Logs

Ambassador

Cross-

Cutting

Concerns

Microservice-

specific Code

M
ic

ro
 S

e
rv

ic
e

 1

Ambassador

Cross-

Cutting

Concerns

Microservice-

specific Code

M
icr

o
Se

rv
ice

Co
m

m
on

Am

ba
ss

ad
or

s
Cr

os
s-

Cu
tti

ng
 C

on
ce

rn
s

Microservice COMPONENT MAP
Proxy,

Security Related
Filters

Data

Config Reader

Data Access

Central Monitor Tool

Fault Tolerance,
Circuit breakerStatus Reporting

Logging Se
rv

ice
 S

pe
cif

ic
Lo

gi
c API Interface

Service Logic
Self Registration

Class Diagram
Diagram Properties:

Shows classes

Shows methods and fields

Shows associations, generalizations, and cardinality

Answers Question:

How shall the team organize the code for this lego block
(software component)?

Serves Purpose:

Shows what this block will do and how it will do it.

See Farragher: https://training.mdfarragher.com/p/learn-how-to-become-an-outstanding-solution-architect

Diagrams as Code…
Wouldn’t it be more useful if these diagrams could be used to generate code?

What if the code could later be validated against the patterns to ensure alignment?

How would we do this?
◦ New language, an idea whose time has come?
◦ Or, automate handling of these diagrams in an IDE….

Requirements for Diagrams as Code
Automatic conversion of visual diagram to code

Automatic conversion of code to diagram

Ability to validate written code against intended diagramà testing and Governance

Diagrams under version control

Visual Studio Ultimate 2017 Provides some of the
Needed Support for Diagrams as Code:

It understands Layer, Sequential, Activity, Component, and Class Diagrams

It allows conversion of Class diagrams into code

It allows conversion of code into Class and Layer diagrams

It will validate that the code matches the intended Layer diagram

What we need is this support for all the types of diagrams mentioned
◦ It can perhaps be built out using extensions and T4

Summary of Diagrams

Lessons Learned
Assessing the security responsibilities of software helps determine what components
are required

Patters need to be organized hierarchically, to keep all levels in check
Patterns always have consequences: choose patterns with consequences that
encourage secure designs
Existing pattern catalogs do not consider security consequences of cataloged patterns,
this is a gap and an opportunity for the AppSec community
Infrastructure patterns should not try to solve problems that are fundamentally the
responsibility of the software / app
Using infrastructure to solve problems that are the responsibility of the software
encourages insecure patterns in the software

Plan Design Build Test Accept Deploy

We present this work as Pattern Zero point 1
We think we have a workable template for designing software (or at least, something pretty
close)

We can map where the security controls should go within software component designs

We can add to the OSA model by
◦ Indicating which pattern to use for which situation
◦ Mapping software level security controls to software components

This effort offers the opportunity to push the OWASP controls left, into the design phase.

Most security input
happens like thisPatterns influence

Plan & Design directly

Where to go from here
We have proposed a pattern set for the use of microservices in DevSecOps

Time to seek industry collaboration on iterative pattern improvement according to the algorithm we
proposed:

1. Propose a set of software architecture and software design
patterns at various levels of detail

2. Subject those patterns to rigorous analysis, including:
• Threat Modeling
• Attack Map / Analysis
• Live attack trial implementation (RedTeam, Pen Test, etc. – pick your

favorite terminology for an intelligent unbounded attacker)
• Other analysis approaches we may not have thought of here

3. Learn from the results

4. Goto (1)

✓

Thanks! Q& A time!

References
Mark Farragher “How to become an Outstanding Solution Architect”

Micro service architecture: http://microservices.io/patterns/microservices.html

Micro service API Gateways: http://microservices.io/patterns/apigateway.html

Azure Microservices architecture: https://azure.microsoft.com/en-us/blog/design-patterns-for-
microservices/

Open Security Architecture: http://www.opensecurityarchitecture.org/cms/library

Other talks on Patterns: https://www.owasp.org/images/1/11/Vanhilst_owasp_140319.pdf

https://msdn.microsoft.com/en-us/library/ee658117.aspx

http://pubs.opengroup.org/architecture/togaf8-doc/arch/chap28.html

http://www.oreilly.com/programming/free/files/software-architecture-patterns.pdf

http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/apigateway.html
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
http://www.opensecurityarchitecture.org/cms/library
https://www.owasp.org/images/1/11/Vanhilst_owasp_140319.pdf
https://msdn.microsoft.com/en-us/library/ee658117.aspx
http://pubs.opengroup.org/architecture/togaf8-doc/arch/chap28.html
http://www.oreilly.com/programming/free/files/software-architecture-patterns.pdf

