Archetypal Secure Application
Design Patterns: The Next Evolution
Or

Layered Pattern Stacks as Code
(LPSaC)

BY JOE GERBER
HISTORY@FRII.COM
1/20/2021

Special Thanks to Absent Friends:

Jay Reynolds Chris Wells, RIP Christian Price
(---) (---) (@DevSecopsxian)

Application Security Program Lead Application Security Architect Cloud Security Architect
CISSP CISSP CISSP, CISM, CISA

The content of this presentation represents a synthesis of our collected experience
Of N Ote - and opinions, informed by the experience and opinions of the many humans whom
have influenced our journey. To all these humans and experiences we are grateful.

To be clear, this presentation does not represent any of our employers, past or
present, and we are grateful to our employers’ support for our independent
community contributions such as this.

The Problem: howto effectively << shift left

How many times have you seen something during a security evaluation that makes you shake your
head?

Do you find yourself saying “if only they had involved us sooner...”?

But what does it really mean to shift left?

((7

The current trend is towards earlier integration of better security testing during CI/CD = earlier
feedback is better.

We constantly want to be engaged at the design phase, but security teams can’t scale and become a
bottleneck

We are missing a huge opportunity to influence design by speaking the language of patterns

Goals / Objectives

Amplify software architecture & design as a critical element of AppSec

Communicate relevance & importance of patterns in context of microservices
Articulate some modern design principles

lllustrate an approach to building a pattern catalog

Help others on the journey

Inspire engagement and contribution

Using patterns to shift security left

This is a journey, We are by no-means ‘done’ with this topic following this talk.
This is an area of continuing passion, inquiry, research, and advocacy for us.

Our Iterative Approach:

1. Propose a set of software architecture and software design patterns at various levels of
detail

2. Subject those patterns to rigorous analysis, including:
Threat Modeling

Attack Map / Analysis

Live attack trial implementation (RedTeam, Pen Test, etc. — pick your favorite terminology for an
intelligent unbounded attacker)

Other analysis approaches we may not have thought of here

(o]

(o]

(o]

(o]

3. Learn from the results

4. Goto (1)

Scope of this presentation:

Survey / Review common architecture patterns:
o applications/software

o infrastructure/deployment

Show how they are broadly applicable
o One interesting test: can the patterns secure some of the riskiest apps?

Show the world as it looks to software and software creators:
o The context in which the software exists

o The other systems with which the software interacts, and the AppSec responsibilities of each
o The components of the software, and the AppSec responsibilities of each
° How to meet those responsibilities

Patterns

Provide reusable solutions to common problems

Provide a consistent language to communicate about solution composition

Can be assessed for weaknesses and improved

Consider other fields of engineering

But what of AppSec?

Lots of answers, and we keep making the same mistakes in new contexts

N-Tier architecture

- Enterprise Security Reference Architecture

. 08 ‘ e
Tier Boundary Data Layer
=

Many good Pattern Catalogs exist.

—

R ————

Why Azure ~ Solutions Products ¥ Documentation Pricing Training Marketplace Partners ¥ Support ¥ Blog

‘L Azure / Architecture Clorud Design Patterns
Cloud Design Patterns

{DWASP Cheat Sheets

AWS Answers

AWS Solutions

AWS Well- This is My AWS Quick Cloud Security

VEITCIE| Cheat Sheets [Collapse] fiil 11/28/2017 « ® 6 minutes to read « Contributors @ Ji_/—\l —Sta_"51

3rd Party Javascript Management - Access Control - AJAX Security Cheat Sheet - ter . e .

- - These design patterns are useful for building reliabj
Authentication (ES) - Bean Validation Cheat Sheet - Choosing and Using Security Questions * applications in the cloud. Home Foundations Definitions Library Community About
Clickjacking Defense - Credential Stuffing Prevention Cheat Sheet -
Cross-Site Request Forgery (CSRF) Prevention - Cryptographic Storage - Each pattern describes the problem that the patte! velopment
C-Based Toolchain Hardening - Deserialization + DOM based XSS Prevention * for applying the pattern, and an example based o N .
Forgot Password - HTML5 Security - HTTP Strict Transport Security - is the patterngs include code samples or snippets thJ :S P - O 1 1 Cl O U d C O m p Ut| n g P a tte r n d improve
Injection Prevention Cheat Sheet - Injection Prevention Cheat Sheet in Java - the pattern on Azure. However, most of the patter\

Developer / Builder JSON Web. Token (.JWT) Cheat Sheet for tlava + Input Validation - distributed system, whether hosted on Azure or onjpiagram: s. Using a

Insecure Direct Object Reference Prevention - JAAS - Key Management - Hha t communicate
LDAP Injection Prevention - Logging + Mass Assignment Cheat Sheet + .NET Security - .
OS Command Injection Defense Cheat Sheet - OWASP Top Ten - Password Storage -+ Pinning - tion Cha"enges n CIOUd developr s
Query Parameterization - REST Security + Ruby on Rails - Session Management - .
SAML Security + SQL Injection Prevention - Transaction Authorization - Lion f Kyaper.
Transport Layer Protection - Unvalidated Redirects and Forwards « User Privacy Protection - @ Availability

XML External Entity (XXE) Prevention Cheat Sheet

Web Service Security - XSS (Cross Site Scripting) Prevention - A‘r-oz
Availability is the proportion of time thal

working, usually measured as a percentd (35 Access Agreements

Attack Surface Analysis - REST Assessment - Web Application Security Testing - affected by system errors, infrastructure "
Assessment / Breaker icati Actor: End Users
XML Security Cheat Sheet - XSS Filter Evasion Store and system load, Cloud applications ty Achitioi] 8 MG agree on Basslie] mas 15
service level agreement (SLA). so applic providers control framework and agree on
Mobile Android Testing + 10S Developer + Mobile Jailbreaking maximize availability. W] minimal set of metrics / observables
OpSec / Defender Virtual Patching - Vulnerability Disclosure (D ccons Entorcament |

User [dentification

Application Security Architecture - Business Logic Security + Content Security Policy - w Actor: IT Manager
| Devit

Draft and Beta Denial of Service Cheat Sheet - Grails Secure Code Review - I0S Application Security Testing - m'ﬂmoaemﬂw] =
raft an
PHP Security - Regular Expression Security Cheatsheet - Secure Coding - Secure SDLC - 1a-05 HEEEE mm Comrar J wumlmon M)
: tographic Key -
Threat Modeling ef{.’uusnmmmm &=l m; .m'"’" . ME&”’"A@“MW)
All Pages In This Category .
L — \

but we need one focused on App Sec Design principles.

Again - Our Iterative Approach:

1. Propose a set of software architecture and software design patterns at various levels of
detail

2. Subject those patterns to rigorous analysis, including:
Threat Modeling

Attack Map / Analysis

Live attack trial implementation (RedTeam, Pen Test, etc. — pick your favorite terminology for an
intelligent unbounded attacker)

Other analysis approaches we may not have thought of here

(o]

(o]

(o]

(o]

3. Learn from the results

4. Goto (1)

Microservices & Patterns

We’ll look at several common patterns involved in:

The construction of a microservice

The way a set of microservices interact to form an application

How these patterns work together

Pattern-Zero
(point 1)

A Layered Software
Architecture View

PROPOSED SECURE SOFTWARE DESIGN PATTERNS

Problem: Software Suffers when Confusion
exists among Views at Different Altitudes

Solution: Provide consistency and coordination among these views.

Preferred solution: Make this consistency repeatable and automate it.

The Solution:
Lavered Pattern Stacks as Code (LPSaC)

Use UML diagrams and Microsoft’s Layer diagram to flesh out where the security controls go
and how they work

Use automated tools (to be discovered/developed) to ensure consistency of the code with each
diagram

Now we can bring many groups into sync:
o Architects

o Developers

o Designers

Presentation layer

Layer Diagram: »

Diagram properties:

* A high-level system diagram showing |~
areas of concern.

* Proposed by Microsoft, not an official
UML diagram ‘ :

Business layer

Answers Question: >

 What is the overall picture? Where
does the software live? }

Serves Purpose: Datalayer

* Depicts an overall map of the relevant
Software Entities in order to keep all
parties on the sameOFa e, and allow
ordering of any neede
infrastructure.

19Ae| apimwadisAs

Service layer

Microservice Laver Diagram

Clients of our Other services & automation
things

[Reverse Proxy

7
)
q
<.
(@)
X
>
9
()]
Q
(g
®
S
)
<

Presentation Server

web
presentation

AUTHN

AUTHZ,
... other
Web Application SEETAE
components

Session State API |

. Session / State
Caching

data

Define “Software Entities” or SW Entities

Examples:
web App
web service
mobile app
APl Gateway

Database

Define Software Component

A (sometimes re-usable) “LEGO Block” of code that can be snapped together with other custom
or re-usable blocks of code to create a SW entity.

High Level App Sec functions of the Service
Gateway

(a.k.a. APl Gateway)

Provides Security Services for microservices, such as :
> Single Entry Point pattern—> this is the only way in to the services
o Message-level validation

o Authorization:
o |s client authorized to talk to this microservice?
o |s this microservice authorized to talk to the other one?

Keeps the apps simpler, by presenting a secure facade, so the app just gets data—it doesn’t need to
interact directly with or even know about the horde of microservices.

Routes messages to microservices, maintains registry of microservices (”Server Side Discovery” with
"Service Registry” and “Self Registration.”)

Aggregates responses to client

Offloads communication and some configuration responsibilities to gateway instead of microservice

Logging, auditing, health checks of microservices

UML Sequence Diagram

|Diagram properties:

Shows sequence of calls

Shows calling class, called method, and returned
type

Can depict loops

Answers Question:

How do SW Entities collaborate?

Serves Purpose:

Shows how interactions among different software
entities are coordinated to meet requirements for a
use case.

Order OrderLine Product
I I |
| toop ! : :
B _ I |
getQuantity I I
" I
Returns int I I
"""""""""" 1 |
I 1
[[
[[
getProduct J I
I |
Returns product | [
"""""""""" 1 |
I [
I I
. I |
getPrice
I $l
I |
Returns decimal |1 [

- = =4

!

Activity Diagram (e)

Diagram Properties:

Shows process or workflow

. [Fill order]4— —P[Send invoice]
Can show concurrent actions
Can be nested .
Priorit}/?
Answers Question: ves l
How do SW Entities collaborate? [Fast delivery] [Normal delivery]
Serves Purpose:
Shows how interactions among different software l
entities are coordinated to meet requirements for a use
case [Set to shipped]

5

Component Diagram g

Diagram Properties:

Shows components
Shows implemented and required interfaces A

Components can be nested

Answers Question: (1

L

Of what custom or reusable LEGO Blocks is this Software =
Entity composed?

Serves Purpose: E E

Shows the pieces of software within each entity and the
App Sec responsibilities of each.

Each Micro Service communicates with all these things:

S

C

()]

o £ .

<o Service Gateway
ad

S~

Mo

v

; -

| | ‘ Central
| Data Monitor
Tool y

Look at the App Sec and communications responsibilities of
each component to help us map out its sub-components

Single Entry Point
- Incoming message validation
e - Incoming message
Authorization

_ - Facade for the services below
Service Gateway - Message routing to services

- Requires router

- Requires Service Registry
- Response aggregation for client
- Handles functions common to all
services, such as:

- Audit Logging
- Poss.lbly health checks on
services

- Simple API for limited set of closely related functions
- Low-level contextual Input validation and Authorization
- Communications to: other services, Service Gateway, config, logging, data store...

tion

web/presenta

Create components to deliver on each set of responsibilities:

%’(-
U Config Service Gateway

J L T 1 i

- Cross-Cutting Concerns:

O _ :

e Loggm.g . Microservice-specific

> - Config reading Code =

g Self registration 9

o e

S\ 4 g

= o
Ambassador 9O

~ Data | < Central Monitor Tool >

APl Gateway COMPONENT MAP

] AUTHN
Message Validator J AUTHZ
S
-.é _é Logs
2 | & =
5 | 3 =l
s |2 >
Q © & -
= 1 9 £ Config 1
) Or
O O
2
Q
)

Micro Service n

Micro Service 1 Micro Service 2

Secure Input Message Validation/Authorization] AUTHN
c &
© > - AUTHZ
B g - e Pt e Cutting)
§ @ y ecure Service Facade Concerns &
g_ 8 ; Communication Logs
% & Secure Microservice Message Routing with other
2 > L and Aggregation _ Components) .
A Config T
—) —i
@ @
O Cross- O Cross- : :
o > Cutting Microservice- > Cuttine Microservice-
E, o specific Code & | Concerns specific Code
- B
ﬂ Config T = [Ambassador = [Ambassador]
E f
© Central Monitor Tool
T Data < Data

Microservijce COMPONENT MAP

Micro Service

Cross-Cutting Concerns

Proxy,
Security Related
Filters

|

 Config Reader

Q
2 l APl Interface l
Q O
Self Registration Y ‘oo
l l v S : :
i Service Logic
[Logging] e
2
5 2
E o | —— ; 7 | Fault Tolerance,
3 _rgu | Data Access Status Reporting Circuit breaker
<
k x

Class Diagram

- - Order Customer
Diagram Properties:
date: Date[0..1] name: string[1]
Shows classes prepaid: bool[1] * 1| address: string[0..1]

price: decimal[1]

Shows methods and fields

JAN
Shows associations, generalizations, and cardinality
Answers Question:
How shall the team organize the code for this lego block
(software component)?
ExpressOrder

Serves Purpose: markup: decimal[1]

Shows what this block will do and how it will do it.

Diagrams as Code...

Wouldn’t it be more useful if these diagrams could be used to generate code?

What if the code could later be validated against the patterns to ensure alignment?

How would we do this?
> New language, an idea whose time has come?

o Or, automate handling of these diagrams in an IDE....

Requirements for Diagrams as Code

Automatic conversion of visual diagram to code

Automatic conversion of code to diagram

Ability to validate written code against intended diagram—> testing and Governance

Diagrams under version control

Visual Studio U

Needed Su

PPO

timate 2017 Provides some of the

t for Diagrams as Code:

It understands Layer, Sequential, Activity, Component, and Class Diagrams

It allows conversion of Class diagrams into code

It allows conversion of code into Class and Layer diagrams

It will validate that the code matches the intended Layer diagram

What we need is this support for all the types of diagrams mentioned
° |t can perhaps be built out using extensions and T4

Summary of Diagrams

Level of Detail [Diagram Name Answers Question Purpose of Diagram Notes
On what planet |Use Case Diagram |What are the Captures Functional Requirements |Not so actionable without the other diagrams; doesn't
does the functional show which software entities do the work.
software live? requirements?
What Layer Diagram What does the Overall map to organize all parties |Can show divisions of App Sec Responsibilities
continent? software do, and how |Map of Software Entities
does it do it?
What Country? [Sequence How do structural Show how interactions among
Diagram & elements collaborate? |various software entities meet
Activity Diagram App Sec responsibilities
What region? |Component Of what (reuseable?) [Enumerate App Sec responsibilities |Components could be nested, requiring addional diagrams
Diagram blocks is the software |[for each software component
composed?
What Class Diagram How to organize the [Shows what each component will
neighborhood? code for a given do, and how it will be organized
component?

Lessons Learned

Assessing the security responsibilities of software helps determine what components
are required

Patters need to be organized hierarchically, to keep all levels in check

Patterns always have consequences: choose patterns with consequences that
encourage secure designs

Existing pattern catalogs do not consider security consequences of cataloged patterns,
this is a gap and an opportunity for the AppSec community

Infrastructure patterns should not try to solve problems that are fundamentally the
responsibility of the software / app

Using infrastructure to solve problems that are the responsibility of the software
encourages insecure patterns in the software

We present this work as Pattern Zero point 1

We think we have a workable template for designing software (or at least, something pretty
close)

We can map where the security controls should go within software component designs

We can add to the OSA model by
° |Indicating which pattern to use for which situation

o Mapping software level security controls to software components

This effort offers the opportunity to push the OWASP controls left, into the design phase.

Most security input
Patterns influence happens like this

Plan & Design directly

\/\/J

Where to go from here

We have proposed a pattern set for the use of microservices in DevSecOps

Time to seek industry collaboration on iterative pattern improvement according to the algorithm we
proposed:

\/ 1. Propose a set of software architecture and software design
patterns at various levels of detail

—_— 2. Subject those patterns to rigorous analysis, including:
® Threat Modeling
® Attack Map / Analysis

® Live attack trial implementation (RedTeam, Pen Test, etc. — pick your
favorite terminology for an intelligent unbounded attacker)

® Other analysis approaches we may not have thought of here

3. Learn from the results

4. Goto (1)

Thanks! Q& A time!

References

Mark Farragher “How to become an Outstanding Solution Architect”

Micro service architecture: http://microservices.io/patterns/microservices.html

Micro service APl Gateways: http://microservices.io/patterns/apigateway.html

Azure Microservices architecture: https://azure.microsoft.com/en-us/blog/design-patterns-for-
microservices/

Open Security Architecture: http://www.opensecurityarchitecture.org/cms/library

Other talks on Patterns: https://www.owasp.org/images/1/11/Vanhilst owasp 140319.pdf

https://msdn.microsoft.com/en-us/library/ee658117.aspx

http://pubs.opengroup.org/architecture/togaf8-doc/arch/chap28.html

http://www.oreilly.com/programming/free/files/software-architecture-patterns.pdf

http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/apigateway.html
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/
http://www.opensecurityarchitecture.org/cms/library
https://www.owasp.org/images/1/11/Vanhilst_owasp_140319.pdf
https://msdn.microsoft.com/en-us/library/ee658117.aspx
http://pubs.opengroup.org/architecture/togaf8-doc/arch/chap28.html
http://www.oreilly.com/programming/free/files/software-architecture-patterns.pdf

