
Detect complex code patterns using
semantic grep

1

Bence Nagy | bence@r2c.dev
 @r2cdev

https://twitter.com/r2cdev

● Secure code is hard
● Static analysis tools are too noisy / too slow
● grep isn’t expressive enough
● Need something, fast, code-aware, flexible, powerful… open source!

Semgrep: Fast and syntax-aware semantic code pattern search
for many languages: like grep but for code

tl;dw - This Talk

2

https://semgrep.dev

Use Semgrep to:

● Search: Find security bugs
● Guard: Enforce best practices
● Monitor: Get notifications about new matches
● Migrate: Refactor code easily

3

4

$ whois
@underyx (Bence Nagy) engineer @ r2c

previously at:
Astroscreen (information warfare)
Kiwi.com (travel)

We’re an SF based code analysis startup.

Mission: profoundly improve code security & reliability

$ getent group r2c

1. A 60 second history 🏞

2. Trees. 🌲 (well… syntax trees)

3. Learning Semgrep! 🎓

4. Integration into CI/CD ⚙

5. Semgrep Rules Registry 📖

5

Outline

6

github.com/returntocorp/semgrep

http://github.com/returntocorp/semgrep

7

First version of Semgrep (sgrep/pfff) was written at Facebook circa
2009 and was used to enforce nearly 1000 rules!

The original author, Yoann Padioleau (@aryx), joined r2c last year.
Yoann was the first static analysis hire at Facebook and previously
PhD @ Inria, contributor to coccinelle.lip6.fr

Semgrep, Est. 2009

https://github.com/aryx
http://coccinelle.lip6.fr/

Language Support

8

License

grep and Abstract Syntax Trees (ASTs)

9

xkcd 1171

10

FALSE POSITIVES

Code is not a string, it’s a tree

11

@app.route("/index")
def index():
 rep = response.set_cookie(name(),
secure=False, s=func())
 return rep

string tree🧶 != 🌲
@app.route(“/index”)

def index():

return rep

response.set_cookie(

name(), func()

Tree Matching 🌲

12

● Many tree matching tools: Gosec, Golint, Bandit, Dlint,
ESLint, Flake8, Pylint, RuboCop, TSLint, and more!

● Have to become an expert in every AST syntax for every
language your team uses

● Need programming language expertise to cover all
idioms: languages have “more than one way to do it”

● Commercial SAST tools?
○ Complicated
○ Slow (not CI friendly)
○ Expensive

https://github.com/securego/gosec/blob/master/rules/blocklist.go#L39-L46

Find calls to old
crypto in 94 LOC
👍

https://github.com/securego/gosec/blob/master/rules/blocklist.go#L39-L46

13

https://instagram-engineering.com/static-analysis-at-scale-an-instagram-story-8f498ab71a0c

Semgrep

https://instagram-engineering.com/static-analysis-at-scale-an-instagram-story-8f498ab71a0c

Semgrep:
reason about analysis like you reason about code

write eval(...) to match eval(request)

14

https://r2c.dev/blog/2020/why-i-moved-to-semgrep-for-all-my-code-analysis/

https://r2c.dev/blog/2020/why-i-moved-to-semgrep-for-all-my-code-analysis/

1. Overview
(The `...` operator, metavars, composition)

2. Semgrep In Practice
(for antipatterns and business logic bugs)

3. Advanced Features
(Extracting Routes, autofix, scripting)

Demos

15

Finding Banned or Deprecated Functions: RC4 (... operator)

⇒ https://semgrep.dev/s/10Bx
Full Solution: https://semgrep.live/X5g4 | docs

16

c, err := rc4.NewCipher(key)
d, err := rc4.NewCipher(otherKey)
e, err := rc4.NewCipher (key)

// rc4.NewCipher(key)
fmt.Println(“rc4.NewCipher(key)”)

https://en.wikipedia.org/wiki/RC4
https://semgrep.dev/s/10Bx
https://semgrep.live/X5g4
https://github.com/returntocorp/semgrep-rules/blob/develop/go/lang/security/audit/crypto/use_of_weak_rsa_key.yaml

Finding Uses of unsafe (Metavariables)

⇒ https://semgrep.dev/s/7gZe/
Full Solution: https://semgrep.dev/s/ErxL/

17

unsafe.Pointer(intPtr)
unsafe.Sizeof(intArray[0])

https://semgrep.dev/7gZe/
https://semgrep.dev/ErxL/

Finding Insecure SSL Configurations (Field/Param matching)

⇒ https://semgrep.live/Pewp
Full Solution: https://semgrep.live/4b9x

18

&tls.Config{
KeyLogWriter: w,
MinVersion: tls.VersionSSL30,
Rand: randSource{}

}

https://semgrep.live/Pewp
https://semgrep.live/4b9x

Finding Insecure SSL Configurations (Composing patterns)

⇒ https://semgrep.live/s/DbYd
Full Solution: https://semgrep.dev/s/Rewg 19

&tls.Config{
KeyLogWriter: w,
MinVersion: tls.VersionSSL30,
Rand: randSource{},
InsecureSkipVerify: true,

}

https://semgrep.live/DbYd
https://semgrep.dev/s/Rewg

20
https://github.com/returntocorp/semgrep/blob/develop/docs/configuration-files.md

https://github.com/returntocorp/semgrep/blob/develop/docs/configuration-files.md

⇒ https://semgrep.live/0oZB
Full Solution: https://semgrep.live/WAbL

var jwtKey = []byte(“my_secret_key”)

token := jwt.NewWithClaims(jwt.SigningMethodHS256, claims)

tokenString, err := token.SignedString(jwtKey)

Using Hardcoded Secret for JWT

21

https://semgrep.live/0oZB
https://semgrep.live/WAbL

1. Overview
(The `...` operator, metavars, composition)

2. Semgrep In Practice
(for antipatterns and business logic bugs)

3. Advanced Features
(Extracting Routes, autofix, scripting)

Demos

22

Hidden Goroutines (blog post) (Antipatterns)

⇒ https://semgrep.live/9A4z
23

https://hackmysql.com/page/golang-antipatterns/#hidden-goroutine
https://semgrep.live/9A4z

Order of API Calls Must be Enforced (Business Logic)

⇒ https://semgrep.live/6JqL
Full Solution: https://semgrep.live/oqZ6

24

 /*
 * In this financial trading application, every transaction
 * MUST be verified before it is made
 *
 * Specifically:verify_transaction() must be called on a transaction
 * object before that object is passed to make_transaction()
 */

https://semgrep.live/6JqL
https://semgrep.live/oqZ6

1. Overview
(The `...` operator, metavars, composition)

2. Semgrep In Practice
(for antipatterns and business logic bugs)

3. Advanced Features
(Extracting Routes, autofix, scripting)

Demos

25

Know When New Routes Are Added (Gorilla Toolkit)

https://semgrep.dev/s/r6o1

26

func (a *App) initializeRoutes() {
 a.Router.HandleFunc("/products",

 a.getProducts).Methods("GET")
}

http://www.gorillatoolkit.org/pkg/mux
https://semgrep.dev/s/r6o1

Semgrep application: code inventory

27

Autofix - Insecure SSL Configuration

https://semgrep.dev/s/xxyA/

28

&tls.Config{
KeyLogWriter: w,
MinVersion: tls.VersionSSL30,
Rand: randSource{}

}

https://semgrep.dev/s/xxyA/

Scripting

29

rules:
 - id: use-decimalfield-for-money
 patterns:
 - pattern-inside: |
 class $M(...):
 ...
 - pattern: $F = django.db.models.FloatField(...)
 - pattern-where-python: 'price' in vars['$F']
 - message: "Found a FloatField used for variable $F. Use
DecimalField for currency fields to avoid float-rounding errors."
 languages: [python]
 severity: ERROR

* requires a flag: --dangerously-allow-arbitrary-code-execution-from-rules

your code here

Use of Weak RSA Key

⇒ https://semgrep.dev/s/zdRl
Full Solution: https://semgrep.dev/s/zdRl | docs

30

// Insufficient bit size
pvk, err := rsa.GenerateKey(rand.Reader, 1024)

// Sufficiently large bit size
pvk, err := rsa.GenerateKey(rand.Reader, 2048)

https://semgrep.dev/s/zdRl
https://semgrep.dev/s/zdRl
https://github.com/returntocorp/semgrep-rules/blob/develop/go/lang/security/audit/crypto/use_of_weak_rsa_key.yaml

recap, a.k.a.
"learn semgrep in 5 min"

31

#1 Code equivalence (semantic grep)

● semgrep knows about the semantics of the language, so one pattern can match

variations of equivalent code (constant propagation! https://semgrep.live/4K5)

●

$X == $X

foo(kwd1=1,kwd2=2,...)

subprocess.open(...)

import foo.bar

Will match (a+b != a+b) # <=> !(a+b==a+b)

foo(kwd2=2, kwd1=1, kwd3=3)

from subprocess import open as
 sub_open

result = sub_open(“ls”)

from foo import bar

32

Will match

Will match

Will match

https://sgrep.live/4K5

#2: ‘...’ ellipsis operator

‘…’ can match sequences of:

● Arguments, parameters
● Characters
● Statements

foo(...,5)

foo(“...”)

$V = get()
...
eval($V)

Will match

foo(1,2,3,4,5)
foo(5)

foo(“whatever sequence of chars”)

user_data = get()
print(“do stuff”)
foobar()
eval(user_data)

33

Will match

Will match

#3 Metavariables (part 1)

● Metavariables start with a $ ($X, $Y, $WHATEVER) , contain uppercase ASCII characters

● Matches:
○ Expressions (including arguments)

○ Statements

○ Names (functions, fields, etc.)

foo($X,2)

if $E:
 foo()

if $X > $Y:
 $S

$F(1,2)

Will match foo(1,2)

if x > 2:
 foo()

if var > 2:
 return 1

foo(1,2)

34

Will match

Will match

Will match

#3 Metavariables (part 2)

You can reuse the same metavariable: semgrep enforces equality constraint

$X == $X

if $E:
 $S
else:
 $S

$V = open()
close($V)

Will match if (a+b == a+b):

if x > 2:
 foo()
 bar()
else:
 foo()
 bar()

myfile = open()
close(myfile)

35

Will match

Will match

Search your code

● Vulnerabilities
● Audit security hotspots
● Extract routes
● Codify domain knowledge

Guard your code

● Secure defaults
● Banned APIs
● Best- and required-

practices
● Configuration file auditing

Awesome Use Cases

36

Upgrade your code

● Migrate from deprecated
APIs

● Apply automatic fixes

Search: Vulnerabilities

37

38

Scan lots of code

https://semgrep.live/2Zz5/

39

@$APP.route(...)

def $FUNC(..., $FILENAME, ...):

 ...

 open(<... $FILENAME ...>, ...)

https://semgrep.live/2Zz5/

40

41

42

Guard with Continuous
Integration

43

● Enforce secure defaults + secure frameworks at CI time
○ Easy to add to CI as either a Docker container or Linux binary

○ JSON output → easy to integrate with other systems

44

Integrations

45

Integrations - GitLab CI

46

Integrations - GitLab CI

47

registry

48

community participation
● 700+ rules under development by r2c + community
● NodeJsScan v4 is powered by semgrep!
● Gosec and find-sec-bugs checks have been ported - no compilation required 👍
● Rule ideas contributed by Django co-creator
● Suggestions by Flask team
● Independent security researchers via HackerOne & elsewhere

49

Community rule registry

https://github.com/securego/gosec
https://find-sec-bugs.github.io/

50

semgrep rules by
Damian Gryski,

(author of Go-Perfbook)

github.com/dgryski/semgrep-go

https://github.com/dgryski/go-perfbook

51

semgrep.dev/registry ⇒ github.com/returntocorp/semgrep-rules

$ brew install semgrep
$ semgrep --config=<url>

Community rule registry

https://semgrep.dev/registry
https://github.com/returntocorp/sgrep-rules

52$ semgrep --config=https://semgrep.dev/p/python

Coming Soon

1000 rules!

Semgrep Community!

Centrally manage Semgrep on your repos!

Tainting (intrafile)

53

eval($X:<user_data>)

54

Locally:
1. (pip|brew) install semgrep
2. semgrep --config=r2c

Semgrep
lightweight static analysis for many languages

Bence Nagy | bence@r2c.dev
r2c.dev | @r2cdev

https://r2c.dev/survey ← plz :)

Online editor:
● semgrep.live

https://r2c.dev
https://twitter.com/r2cdev
https://r2c.dev/survey
https://semgrep.live

