/(Re+)*/

For fun and stuck!

O que é uma expressao regular (regex)?

e Uma expresséo regular (regex) € uma sequéncia de caracteres que especificam um
padrao de busca.

e Surgiu a partir dos estudos do matematico Stephen Cole Kleene no ano de 1950.

e Definiu as bases para os primeiros algoritmos de busca.

RegExr

Expression
([A-2])\w

Text 5 matches (0.2ms)

Learn, -Build, -&-Test-Regular-Expressions

Pra que serve uma (expressao regular) regex?

e S3ao utilizadas para busca, extragao, substituicdo e validagcado de padrdes de
caracteres.

e Ultilizada por softwares que realizam busca, SGDBs, IDEs, processadores de texto,
WAFs, IDSs, motores de busca, parsers, utilitarios de linha de comando e etc.

e MySQL, MongoDB, VS Code, grep, findstr e etc.

Pra que serve uma (expressao regular) regex?

e Validacao de IPv4

/\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}/

\ (

L b e o
\. - Equivale L)0

Pra que serve uma (expressao regular) regex?

e Comentarios HTML / XML

/<!--([\s\S]*?)-->/

O que € um ataque ReDoS?

e E uma abreviacéo de Regular Expression Denial of Service.

e Pode causar indisponibilidade de um sistema por lentidao ou por queda.

e E um ataque que ocorre quando um engine de expressao regular tentar validar uma
entrada (texto) e consome muito recurso computacional para realizar a analise.

CWE-1333: Inefficient Regular Expression Complexity

Weakness ID: 1333
Vulnerability Mapping: ALLOWED
Abstraction: Base

e s - (_
View customized information: Conceptual ‘ Operational (’;:Z:;:g Custom

Vv Description
The product uses a regular expression with an inefficient, possibly exponential worst-case computational complexity that consumes excessive CPU cycles.

Porque um ReDoS ocorre?

e Alguns algoritmos de analise de expressao regular implementam backtracking®.

e Dependendo do tamanho do input, esse algoritmo com backtracking é sobrecarregado
e consome muito processamento para analisar um regex.

e Expressoes regulares ambiguas "triggam" esse cenario.

e Linguagens que possuem engine que implementam backtracking sao vulneraveis.
(C#, JavaScript, Java, Python, PHP, Ruby, etc.)

*Algoritmo de busca profunda (Depth-First Search)

Show me the code

Talk is cheap. Show me the code.

(Linus Torvalds)

izquotes.com

Incidentes e vulnerabilidades de ReDoS

CloudFlare (02/07/19) - DoS de dominios devido a uma regex em uma regra de WAF.

StackOverflow (20/07/2016) - DoS devido a uma regex que removia espagos no inicio e ao
final do texto.

validator.js (CVE-2021-3765) - Ja teve varias vulnerabilidades de ReDoS e é utilizada por mais
de 5600 bibliotecas.

jsPDF (CVE-2021-23353) - Vulnerabilidade de ReDoS ao validar uma imagem.

Falhas ReDoS nao param de crescer

ReDoS vulnerabilities in npm spikes by
143% and XSS continues to grow

Written by: &g Liran Tal

Regular expression denial of service

The Node.js runtime is known to have many Regular expression denial of service (ReDoS)
strengths, but one of them, the single threaded Event disclosures on the rise
Loop, can also be its weakest link if not used correctly.

This happens more regularly than one might think. 80

Regular expression denial of service (ReDoS)
attacks exploit the non-linear worst-case complexity
vulnerabilities that some regex patterns can lead

to. For a single-threaded runtime this could be
devastating, and this is why Node.js is significantly

affected by this type of vulnerability.

We found that there were a growing number of
ReDosS vulnerabilities disclosed over the last three

years, with a spike of 143% in 2018 alone.

O formato CSV

e E um formato de texto que utiliza virgulas para separar valores

e E um formato de arquivo level e simples para representar dados em forma de linhas e
colunas

e Muito usado em softwares como Microsoft Excel e Libre Office

O formato CSV

Nome, Idade,Cidade,Hobbies

Joao, 25,5ao0 Paulo,"Leitura,Esportes,Jogos de Tabuleiro"
Maria,30,Rio de Janeiro,"Mlsica,Artes,Culinaria"

Carlos,22,Belo Horizonte,"Viajar,Fotografia,Esportes Aquaticos"

Cidade Hobbies
Séao Paulo Leitura,Esportes,Jogos de Tabuleiro
Rio de Janeiro Musica,Artes,Culinaria

Belo Horizonte Viajar,Fotografia,Esportes Aquaticos

Google e sites estilo Stack Overflow

Google

regex for csv delimiter X | m 8 @

Q Todas ([Imagens [Livios (3] Videos @ Noticias i Mais Ferramentas
(@ stack overfiow A

https:/istackoverflow.com » regula... - Traduzir esta pagina

Regular expression to match CSV delimiters - regex

21 de Jun. de 2011 — A MatchAll-type function with this regex would give you a list/array of all

the items in the CSV file. If, as you said in another comment, you' ...

6 respostas - Melhor resposta: See my post that solves this problem for more detall. A(?:(2:"(?...

Regex to split a CSV - Stack Overflow 9 de ago. de 2013

Regex for Comma delimited list - csv - Stack Overflow 8 de set. de 2009

How can | use regex as a delimiter when importing a csv flle ... 29 de Jul. de 2017

Using a Batch script, how do | use regex to splitup dataina... 23 de mal. de 2019

Mals resultados de stackoverfiow.com

J
(gm OReily Media)
https:/iwww.oreilly.com > view - Traduzir esta pagina

8.10. Change the Delimiter Used in CSV Files

Solution. The following regular expression matches an individual CSV field along with ts

preceding delimiter, if any. The preceding delimiter is usually a ...

J/

Software Engineering Stack Exchange

https:/isoftwareengineering.stackexchange.com ... - Traduzir esta pagina
Can the csv format be defined by a regex?
27 de set. de 2012 — A colleague and | have recently argued over whether a pure regex is
capable of fully encapsulating the csv format, such that It is capable of ..

5 respostas - Melhor resposta: Nice in theory, terrible in practice By CSV I'm going to assume ...

Gist

hitps://gist.github.com > awwsmm - Traduzir esta pagina
Regex for parsing Microsoft-style CSV data
Parse Microsoft-style CSV data with regex. Background. CSV (comma-separated values) files
organise their data by separating them with newlines and commas.

Google

-
()

regex for csv delimiter X | m

Towards Data Sclence
hitps:/ftowardsdatasclence.com » f... - Traduzir esta pagina

Fixing Common CSV Errors with Regex | by Zachary Warnes

11 de ago. de 2021 — Regular expressions are a powerful tool that is often overlooked. In this

post, | am going through several common issues with CSV files and ...

CopyProgramming

https://copyprogramming.com » r... - Traduzir esta pagina
Regex to split a CSV
4 de abr. de 2023 — Separate your text sample by using commas as delimiters. will process
empty values; If double quotes are not nested, double quote d commas Wil ...

Ask LibreOffice
https:/asklibreoffice.org > parsin... Traduzir esta pagina

Parsing a csv file using Regex (almost)

23 de abr. de 2021 — | am successfuly (almost) parsing a csv file using regex. This Is a simple

version of a more complex structure. The (csv) text in cell b1 ...

RegExLib
https:/iregexiib.com > Search » k=... - Traduzir esta pagina

Search Results: 14 regular expressions found.

A regex that will split a CSV file when used for MATCH function. All values must be in quotes,

and seperated by commas.

(O Jvid
hitps://support.okta.com > article * Traduzir esta pagina
How to Add Regex Rule for Values Coming in CSV Format

In case the recelved headers have used a different delimiter, then the rule will not work as
expected. The delimiter in the regex needs to be corrected in that ...

‘ORAYLIS

https://www.oraylis.de > blog > an... - Traduzi esta pagina
Analyzing Flat File data with Regular Expressions
The pattern of a column is defined, using the delimiter of the csv file. Let's say, we have data,
delimited by a semicolon (the spaces are added only for better ...

\ Google e sites estilo Stack Overflow

Regex vulneraveis Regex nao vulneraveis

Chat GPT

@ You

| need a regex to get every comma that’s outside a"", look the example

1,0,3,"Braund, Mr. Owen Harris", male,22,1,0,A/5 21171,7.25,,S

@® chataPT

You can use the following regular expression to match commas outside double quotes:

regex () Copy code

,(?z(?:[An]*n[Au]*n)*[;\u]*$)

Here's how this regex works:

* °, matches the comma.

* *(?= ...) isapositive lookahead assertion, which checks if the following pattern is
present without including it in the match.

“(2:[~"1*"[~"]1*")* " matches pairs of double quotes and anything in between
them. This allows us to skip commas inside double quotes.

* "[~"1*$" matches anything that is not a double quote until the end of the string.

@ You

This regex is vulnerable to redos

RIS

ChatGPT
You're correct; the provided regex can potentially be vulnerable to catastrophic
backtracking, which is a security concern. To address this, you can make a slight

modification to make it more efficient and avoid potential performance issues.
Here's an updated regex that aims to be more efficient:

regex) Copy code

J(2=(2: (21 (21 T[AN TR R[ANTH)RU[ANTRN[AN]R)R[AN]*G)

This modification introduces a non-capturing group *(2:[A"1*"[A"]1*"[*"]*)*" to
match sequences of characters within double quotes more efficiently, reducing the risk
of catastrophic backtracking. The overall structure of the regex remains the same,

ensuring commas are matched outside these sequences of double quotes.

Always be cautious when dealing with regular expressions, especially in scenarios
where user input is involved, to prevent potential security vulnerabilities like Regular
Expression Denial of Service (ReDoS).

Chat GPT

o You

This regex is vulnerable to redos

=M NTNTS)

@ chatGPT
| apologize for the oversight. You are correct, and | appreciate your diligence in
pointing that out. To avoid potential ReDoS vulnerabilities, we can use a different
approach:

regex () Copy code

lI[AII]*III[A’]+

This regex will match either a quoted string or a sequence of characters that does not
include a comma. You can use this regex to extract values from your CSV data while
avoiding the ReDoS issue.

\ Chat GPT

Regex vulneraveis Regex nao vulneraveis

Github Copilot

I need a regex that parse this CSV 1,0,3,"Braund, Mr. Owen Harris", male,22,1,0,A/5 21171,7.25,,S B

Discard| v O Changed 4 lines &% &/

// BEGIN: regex I need a regex that parse this CSV 1,0,3,"Braund, Mr. Owen Harris", male,22,1,0,A/5 21171,7.25,,S B
const regex = /(2:7],) (2: (22" ([~ I (2:"" [~ %) %) ") | ([, 1)) (?=, |$) /g;

// END: regex Discard | v O Changed 7 lines &7 &7

const csvString = '1,0,3,"Braund, Mr. Owen Harris", male,22,1,0,A/5 21171,7.25,,S"';
| need a regex that parse this CSV 1,0,3,"Braund, Mr. Owen Harris", male,22,1,0,A/5 21171,7.25,,S B const regexPattern = /, (?=(?2: (?: [*"]*"){2})*[""]*$)/;

Discard| vl o Changed 7 lines &y & const csvArray = csvString.split(regexPattern):|
console.log(csvArray);

// BEGIN: Regex pattern

®nst csvString = '1,0,3,"Braund, Mr. Owen Harris", male,22,1,0,A/5 21171,7.25,,S';
const regex = /(2:2],) (\"(2: [*\"1+]\"\")%\" | [*,1%)/g;

const result = csvString.match(regex).map((value) => value.replace(/~,/, '')); | need a regex that parse this CSV 1,0,3,"Braund, Mr. Owen Harris", male,22,1,0,A/5 21171,7.25,,S B>
console. log(result);

// END: Regex pattern Discard| v O Changed 7 lines &7 &

// BEGIN: Regex to split CSV string

const csvString = '1,0,3,"Braund, Mr. Owen Harris", male,22,1,0,A/5 21171,7.25,,S';
const regex = /,(?=(2:(2: [*"]x"){2})*[~"1%$)/;

const result = csvString.split(regex);

console.log(result);

// END: Regex to split CSV string

Github Copilot

Changed 7 lines 4 &P

- Changed 12 lines 4 &P

>

Changed 7 lines b &P

\ Github Copilot

Regex vulneraveis Regex nao vulneraveis

4

\ Google, Chat GPT e GitHub Copilot

Regex vulneraveis Regex nao vulneraveis

11 I

Minha primeira CVE &

xlsx
0.18.5 + Public +« Published 2 years ago

@ Readme ﬁ Code 9 7 Dependencies @ 108 Versions

SheetJS Install

. . . . > i xl
The SheetJS Community Edition offers battle-tested open-source solutions for extracting useful npm L xtsx
data from almost any complex spreadsheet and generating new spreadsheets that will work with

legacy and modern software alike. Repository
© github.com/SheetJS/sheetjs
SheetJS Pro offers solutions beyond data processing: Edit complex templates with ease; let out

your inner Picasso with styling; make custom sheets with images/graphs/PivotTables; evaluate Homepage
formula expressions and port calculations to web apps; automate common spreadsheet tasks, & sheetjs.com/

and much more!

CVE-2024-22363

Summary

All versions of SheetJS CE through 0.20.1 are vulnerable to "Regular Expression Denial of Service"
(ReDoS). For more details, see https://regexide.com

Categorization

CVSS Vector: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H{(Score 7.5 - Hi

CWE-1333 Inefficient Regular Expression Complexity [1]

Minha primeira CVE

Why the move away from npm registry?

@© Closed

&

Jsin
| noticed from this that you moved away from publishing to the npm registry and recommend people download

using tarballs on the CDN. Why did you move away? The npm registry is an extremely common way to download packages.

& 2

SheetJSDev

Hi, sheetjs!

On May 31, 2022, your account will be enrolled in mandatory 2FA as you are a
maintainer of xIsx, one of the Top-500 packages by dependents on the npm reg-
istry. Late last year, we announced our intent to enforce 2FA for all high-impact
maintainers of package on the npm registry and on February 1, 2022, we began
rolling out mandatory 2FA to our first cohort.

How will this affect my account?

The package on the npm registry is surprisingly popular (one of the top-500 by dependents). npm invalidated the old publish
token and is forcing 2FA on the publishing account.

Due to ongoing legal matters between SheetJS LLC and npm, Inc. (which will not be discussed here), it did not make sense
to continue using the public npm registry for distribution.

With . e are reminded of the ephemerality of
the Internet and the inherent risks of relying on platforms.

Users should upgrade to version 0.20.2 or later. Official releases are available on the SheetJS CDN [2].
SheetJS CE documentation includes installation instructions for common deployments [7].

Acknowledgements

Special thanks to Asadbek Karimov and Jardel Matias for discovering and helping to resolve the issue.

Minha quase segunda CVE

nodemailer [or
6.9.13 + Public + Published 17 days ago

@ Readme [ﬁ Code | @ & 0Dependencies & 6,911 Dependents @ 269 Versions

NOdemailer Install

nodemailer ReDoS when trying to send a specially crafted email

* npm i nodemailer
Moderate severity

Vulnerability details Dependabot alerts 0

Repository
@ github.com/nodemailer/nodemailer
Severity
n nodemailer <=6.9.8 6.9.9 Moderate) 5.3
Homepage
CVSS base metrics @ nodemailer.com/
Description Attack vector Network
Attack complexity Low + Weekly Downloads
Privileges required None Vv
Summary eesre 3,150,937
User interaction None
A ReDoS vulnerability occurs when nodemailer tries to parse img files with the parameter attachDatalrls set, causing the stuck of
Scope Unchanged
event loop.
Another flaw was found when nodemailer tries to parse an attachments with a embedded file, causing the stuck of event loop. Confidentiality None
Integrity None
Details Availability s
Regex: [~data:((%:[%;];) (2:[%))), () $/ CVSS:3.1/AV:NJAC:L/PR:N/UI:N/S:U/CIN/I:NJAL
Path: compile -> getAttachments -> _processDataUrl
Weaknesses
Regex: [(<img\b[~>]* src\s*=[\s"']*) (data:([*;]+);[*"'>\s]+)/
Path: _convertDatalmages
CVE ID

PoC

GHSA ID

Fun facts

Your reported issue stems from the regular expression /<!--([\s\S]*?)-->/mg . This general pattern of a non-greedy match of HEADER +
any + FOOTER is common (and is easily "pumped" by repeating HEADER). There are a number of workarounds. In this case it would
suffice to ensure that FOOTER exists:

if(strindexOf("-->") > -1) str = strreplace(/<!--([\s\S]*?)-->/mg,"")

For good measure, we will go back and review some of the regular expressions with an eye towards different options. That replace
literally looks for a closing *-->" after an opening "<!--', which is probably better implemented as a loop that scans for HEADER and
FOOTER using ‘indexOf'

e‘ Jardel Matias J0- 4\ Responder % Responderatodos > Encaminhar
Para: SheetJS Security Team Seg, 08/01/:

E evilFile.xisx
1

Hi again, just thinking a little bit more but | think that this line does not solve the problem
if(str.indexOf("-->") > -1) str = str.replace(/<!--([\s\S]*?)-->/mg,"")
The conditional there can be easly bypassed via a crafted file that start like this </--></--</-- and still trigger the ReDos.

Best regards.

Fun facts

é’ Jardel Matias 5‘:1* Responder Responder atodos > Encaminhar = [
Para: andris@reinman.eu Ter, 20/02/2024 02:24

I'm sorry about that, | don't like being an annoying guy, but the fix for the ReDoS flaw that | mentioned still persists, the main
point is:

| recommend you this link to check vulnerable regex, it is not a 100% guarantee, but during my tests it almost never failed.

v6.9.10

Best regards,

Jardel Matias

(2024-02-22)
Bug Fixes
» data-uri: Do not use regular expressions for parsing data URI schemes (12e65¢9)
» data-uri: Moved all data-uri regexes to use the non-regex parseDataUri method (edd5dfe)
» Assets 2

&

Fun facts

473 - let parts = (content.path || content.href).match(/~data: ((?:[~;1%;)*(?2:[~,1%)), (.%)$/1);

474 = if (lparts) {
522 + let parsedDatalri = module.exports.parseDataURI(content.path || content.href);
523 +
524 + if (!parsedDataUri || !parsedDataUri.data) {

parseDataURI(uri) {

[+ let input = uri;

565 + let commaPos = input.index0f(',"');

566 + if (!commaPos) {

567 + return uri;

568 + ¥

569 +

570 + let data = input.substring(commaPos + 1);

571 + let metaStr = input.substring('data:'.length, commaPos);
572 +

573 + let encoding;

574 +

57Ol + let metaEntries = metaStr.split(';');

576 + + let lastMetaEntry = metaEntries.length > 1 ? metaEntries[metaEntries.length - 1] : false;
577 + if (lastMetaEntry && lastMetaEntry.index0f('=') < 0) {
578 + encoding = lastMetaEntry.toLowerCase();

579 + metaEntries.pop();

580 + }

581 +

582 + let contentType = metaEntries.shift() || 'application/octet-stream';
583 + let params = {};

584 + for (let entry of metaEntries) {

585 + let sep = entry.index0f('=");

586 + if (sep >= 0) {

587 + let key = entry.substring(@, sep);

588 + let value = entry.substring(sep + 1);

589 + params [key] = value;

F u n f tS 421 + module.exports.parseDataURI = uri => {
a‘ : 422 + let input = uri;

423 4+ let commaPos = input.indexOf(',');
424 + if (!commaPos) {
425 + return uri;
426 + }
427 +
428 + let data = input.substring(commaPos + 1);
429 + let metaStr = input.substring('data:'.length, commaPos);
430 +
431 + let encoding;
432+
433 4+ let metaEntries = metaStr.split(';');
434+ let lastMetaEntry = metaEntries.length > 1 ? metaEntries[metaEntries.length - 1] : false;
435 + if (lastMetaEntry &% lastMetaEntry.index0f('=') < @) {
436 + encoding = lastMetaEntry.tolLowerCase();
437 4+ metaEntries.pop();
438 + }
439 +
440 + let contentType = metaEntries.shift() || 'application/octet-stream';
441+ let params = {};
442+ for (let entry of metaEntries) {
443 4+ let sep = entry.index0f('=');
444 4 if (sep >= 0) {
537 537 * @return {Object} Parsed element ol - et by = @iy SUsErne((, Sa)y
446 + let value = entry.substring(sep + 1);
538 538 */ 447 4+ params[key] = value;
539 539 _processDataUrl(element) { 448+ ¥
540 = let parts = (element.path || element.href).match(/~data: ((?:[~;1%;){0,203(?:[~,1%)), (.%)$/i);

541

if (!parts) {

540 + let parsedDataUri;

541 + if ((element.path || element.href).match(/~data:/)) {

542 + parsedDataUri = this.parseDataURI(element.path || element.href);
543 + }

544 +

545 + if (!parsedDatalri) {

Como prevenir ataques ReDoS?

° Utilize bibliotecas de terceiros.

Evite criar regex que possam levar a resultados ambiguos, evite agrupamentos com repetigdes ou alternancia. Como por
exemplo:

Adata:(\WW*\\w*);*(charset=[\w=-]")";*$

A([a-zA-Z0-9])(([\-]I[_1+)?([a-zA-Z0-9]+))"(@){1}[a-z0-9]+[.1{1}(([a-z]{2,3})|([a-z]{2,3}[.]{1}[a-z]{2,3}))$
A\D*[\d.]+,\d{2}$
Aala)*$

Utilize engines de regex que nao sejam vulneraveis a backtracing, como por exemplo a re2 da Google.*

° Mantenham suas dependéncias atualizadas.

*Linguagens como Go e Rust ndo s&o vulneraveis.

Como prevenir ataques ReDoS?

e Valide as suas regex

22)@@ (@ D) (19 (2=, $)/

1A @2 (T 1) * D) |([*]%)(?2=,|$)/ is vulnerable

° https://devina.io/redos-checker c

fuzz

Attack string

\X@0' + '\x80'.repeat(54773) +

e Projeto recheck

Hotspot

FA) (22 (T2 A TR L, 1%) (2=,18) 7

e Biblioteca JS, biblioteca Scala e Plugin ESLint

° https://makenowjust-labs.github.io/recheck/

recheck

https://devina.io/redos-checker
https://makenowjust-labs.github.io/recheck/

Como prevenir ataques ReDoS?

Utilize as funcionalidades da linguagem que vocé utiliza

C# (Backtrack abortion)

Regex.MatchTimeout Property

Reference &) Feedback

Definition

Namespace: System.Text.RegularExpressions
Assembly: System.Text.RegularExpressions.dl|
Source: Regex.Timeout.cs &

Gets the time-out interval of the current instance.

C# I Copy

public TimeSpan MatchTimeout { get; }

Como prevenir ataques ReDoS?

Linear regex algorithm #51659

francoatmega opened this issue on Feb 4 - 4 comments

< francoatmega commented on Feb 4 - edited ~

What is the problem this feature will solve?

Recently, we have witnessed a surge in ReDoS (Regular Expression Denial of Service) issues, and the root cause behind
these occurrences lies in the regex engine we employ for matching patterns. There is a library called re2, which serves as a
wrapper for Google's re2 engine. This library resolves all regex patterns in linear time, albeit lacking support for
backreferences and look-arounds.

Upon researching this matter, it becomes evident that prominent projects are grappling with this problem. Languages such
as Rust and Go have successfully mitigated these issues long ago. Considering the impact of ReDoS on Node.js, particularly
its tendency to stall the event loop, it seems prudent to integrate this functionality into the Node.js codebase.

For further insights into the severity of ReDoS vulnerabilities, you may refer to the following resources:

https://snyk.io/blog/redos-vulnerabilities-in-npm-spikes-by-143-and-xss-continues-to-grow/

https://swtch.com/~rsc/regexp/regexpl.html
@ rluvaton commented on Feb 5 Member | ***

Since RegExp is part of ECMAScript and therefore the JS engine should implement this and not NodeJS, you can open issue
in the V8 issue tracking

© (41

Como prevenir ataques ReDoS?

Aurele-Barriere commented on Feb 6

Have you looked into using the "Experimental" regex engine in V8, available in Node?

It has been described here:
https://v8.dev/blog/non-backtracking-regexp
It uses exactly the Thompson NFA simulation algorithm described in the blog post you linked.

You can start node with node --enable-experimental-regexp-engine .
Then, a new Regex flag is available, 1.
Any regex with the 1 flag will be executed using the linear Experimental engine.

For instance, if | define const re = /(ax)*b/ ,

Using the usual backtracking algorithm on a string of "a"s (for instance "a".repeat(1000).match(re)), it takes forever.
But if | define instead const re = /(ax)*b/1 with the 1 flag, then "a".repeat(1000).match(re) finishes almost
immediately.

As you said, this engine lacks support for backreferences and lookarounds.
However, a recent commit adds support for lookbehinds without capture groups inside:
https://chromium-review.googlesource.com/c/v8/v8/+/5093860

Is this Experimental engine what you are looking for?

© (1) (B

Como prevenir ataques ReDoS?

Claudia <impinball@gmail.com> qua, 7defev,13:32 ¢

para v8

‘You may be interested in the following links:

V8 does impose a bound currently on some regexps, but not all.

On Tuesday, February 6, 2024 at 4:59:04 AM UTC-8 jardelm...@gmail wrote:
Recently, we have witnessed a surge in ReDoS (Regular Expression Denial of Service) issues, and the root cause behind these occurrences lies in the regex
engine we employ for matching patterns. There is a library called re2, which serves as a wrapper for Google's re2 engine. This library resolves all regex patterns in
linear time, albeit lacking support for backreferences and look-arounds.
Upon researching this matter, it becomes evident that prominent projects are grappling with this problem. Languages such as Rust and Go have successfully
mitigated these issues long ago. Considering the impact of ReDoS on Node.js, particularly its tendency to stall the event loop, it seems prudent to integrate this
functionality into the Node.js codebase.

For further insights into the severity of ReDoS vulnerabilities, you may refer to the following resources:

http: nyk.io/blog/redos-vulnerabilities-in-npm-spikes-by-143-and-xss-continues-to-grow/
https://swtch.com/~rsc/regexp/regexp1.html

To solve this problem maybe we can implementing a regex algorithm that operates in linear time, such as the Thompson implementation detailed in this link, is a
worthwhile endeavor.

A had open the issues in Node Js issues page, take a look https://github.c dejs/node/issues/51659

Best regards,

Jardel Matias

Como prevenir ataques ReDoS?

Blog Docs Tools JS/Wasm features Research

An additional non-backtracking RegExp engine
Published 11 January 2021 - Tagged with internals RegExp

Starting with v8.8, V8 ships with a new experimental non-backtracking RegExp engine (in addition to the
existing Irregexp engine) which guarantees execution in linear time with respect to the size of the subject
string. The experimental engine is available behind the feature flags mentioned below.

/(a*)*b/.exec(‘a"repeat(n))

04

03
i
=

o 02
E
=
S
@

0.1

0

0 25 50 75 100

Subject length n
Runtime of /(a*)*b/.exec('a’.repeat(n)) forn <100
Here’s how you can configure the new RegExp engine:

« --enable-experimental-regexp_engine-on-excessive-backtracks enables the fallback
to the non-backtracking engine on excessive backtracks.
e --regexp-backtracks-before-fallback N (default N = 50,000) specifies how many backtracks

The fallback mechanism does not apply to all patterns. For the fallback mechanism to kick in, the RegExp
must:

« not contain backreferences,

« not contain lookaheads or lookbehinds,

« not contain large or deeply nested finite repetitions, as in e.g. /a{200,500}/, and
« not have the u (Unicode) or i (case insensitive) flags set.

Background: catastrophic backtracking

RegExp matching in V8 is handled by the Irregexp engine. Irregexp jit-compiles RegExps to specialized
native code (or bytecode) and is thus extremely fast for most patterns. For some patterns, however,
Irregexp’s runtime can blow up exponentially in the size of the input string. The example above,
/(a*)*b/.exec('a".repeat(100)), does not finish within our lifetimes if executed by Irregexp.

So what’s going on here? Irregexp is a backtracking engine. When faced with a choice of how a match can
continue, Irregexp explores the first alternative in its entirety, and then backtracks if necessary to explore
the second alternative. Consider for instance matching the pattern /abc| [az][by][@-9]/ against the
subject string 'ab3" . Here Irregexp tries to match /abc/ first and fails after the second character. It then
backtracks by two characters and successfully matches the second alternative /[az][by][0-9]/. In
patterns with quantifiers such as /(abc)*xyz/, Irregexp has to choose after a match of the body whether
to match the body again or to continue with the remaining pattern.

Let’s try to understand what’s going on when matching /(a*)*b/ against a smaller subject string, say
"aaa' . This pattern contains nested quantifiers, so we're asking Irregexp to match a sequence of
sequencesof 'a', and then match 'b'. Clearly there is no match because the subject string does not
contain 'b'. However, /(a*)*/ matches, and it does so in exponentially many different ways:

\ Como prevenir atagues ReDoS?

e Habilitar a feature flag --enable-experimental-regexp-engine
e Adicionar a flag I nas regex

° Be happy ;)

Como prevenir ataques ReDoS?

Talk is cheap. Show me the code.

(Linus Torvalds)

izquotes.com

Referéncias

https://owasp.org/www-community/attacks/Reqular expression Denial of Service - ReDoS

https://en.wikipedia.org/wiki/Reqular expression

https://www.reqular-expressions.info/catastrophic.html

https://lirantal.medium.com/node-is-pitfalls-how-a-regex-can-bring-your-system-down-
cbfldc6c4e02

https://levelup.gitconnected.com/the-reqular-expression-denial-of-service-redos-cheat-sheet-
a78d0ed7d865

https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://en.wikipedia.org/wiki/Regular_expression
https://www.regular-expressions.info/catastrophic.html
https://lirantal.medium.com/node-js-pitfalls-how-a-regex-can-bring-your-system-down-cbf1dc6c4e02
https://lirantal.medium.com/node-js-pitfalls-how-a-regex-can-bring-your-system-down-cbf1dc6c4e02
https://levelup.gitconnected.com/the-regular-expression-denial-of-service-redos-cheat-sheet-a78d0ed7d865
https://levelup.gitconnected.com/the-regular-expression-denial-of-service-redos-cheat-sheet-a78d0ed7d865

Duvidas

Post sobre ReDos

ReDoS for fun and stuck

= i t
(e rancoatmega

5minread - Oct 22,2023

What is a regular expression?

A regular expression (regex) is a sequence of characters that specify a search
pattern. It is defined as a formal language and originated from the studies of

the mathematician Stephen Cole Kleene in the 50s.

Where are regular expressions used?

Regular expressions specify patterns, so they are widely used for data
validation and extraction. Below is an example of a regex that identifies

whether a given text is a I[P address:

\d{1,3}\d{1,3}\d{1,3}\d{1,3}

Contato

OxfrancO4tmeg4 Following v Message = *& e

3 posts 150 followers 200 following

Jardel Matias
InfoSec Hobbyist
Ethical Pirate % =
@hackincariri
#hacktheplanet

@ francoatmega.io

Followed by _higordiego, hbrt.js, jogdsjunior + 50 more

BB POSTS & TAGGED

Contato

0s GPTW m O
Work. -

Certificada
'@ t BRASIL
. mb |abs
: i/
Jardel Matias @ (He/Him) %5« Hack In Cariri

Software Engineer | InfoSec Enthusiast | App Sec
. . . . ’ Faculdade Ledo Sampaio
Juazeiro do Norte, Cear3, Brazil - Contact info

802 followers - 500+ connections

(Add profile section> (Enhance profile> <More>

