
OWASP FOUNDATION
®

OWASP France Meetup
Bordeaux - 22/02/2023

OWASP FOUNDATION owasp.org

> whois
Tiana (pronounced ‘Teen’/’Tine’)
Find me > @razaina
Former smart card security evaluator
Mobile Security Analyst @eshard
OWASP MAS-related tests developer for our SAST/DAST tool
OWASP Mobile Top 10 volunteer

2015 2017 2021 2022

Chip
Security
Testing

Mobile App
Security
Testing

System
Security
Testing

OWASP FOUNDATION owasp.org

How OWASP-compliant are Mobile Banking Apps in Europe?

src: White paper on “European Mobile Banking Apps Security Benchmark”, eShard.

⇒ 120 apps automatically tested
⇒ 0 are OWASP-compliant

Should we worry?

OWASP FOUNDATION owasp.org

Why should we care?

src: https://www.storyly.io/post/10-statistics-mobile-banking-finance-app

When was the last time you unlocked your phone?

The mobile app is an entry point
○ To remote servers
○ To the end-user’s device

The risks:
○ From the user perspective, e.g: personal data

loss/leakage (bank account, password, etc.)
○ From the business perspective:

■ Data leakage
■ Intellectual property
■ Business model impact:

● Ads removal
● Premium features enabled for everyone
● Game cheats

■ Overall reputation

https://www.storyly.io/post/10-statistics-mobile-banking-finance-app

OWASP FOUNDATION owasp.org

How can we limit those risks?
❏ Be at least compliant with existing standards, e.g: OWASP Mobile Application Security Verification Standard

(MASVS)

❏ Pentesting the app is costly, but automated compliance processes can lower the overall costs

❏ Continuous Integration/Continuous Delivery (CI/CD) is already well known in DevOps

⇒ Why not include Mobile Application Security Testing (MAST) as well?

⇒ Foster DevSecOps culture to become more agile and respond more quickly to change and innovation

OWASP FOUNDATION owasp.org

Introduction to CI/CD

Dev Build Functional
Test

Security
Test

Acceptance
Test Deploy

Continuous Integration
Merge all code and automatically build the app
throughout the day

Continuous Deployment/Delivery
Automatically deploy new app to prod

OWASP FOUNDATION owasp.org

Introduction to Continuous Testing (CT)

Src: Dan Ashby

https://danashby.co.uk/2016/10/19/continuous-testing-in-devops/

OWASP FOUNDATION owasp.org

Why should you integrate MAST in your
CI/CD?
Pentests are still very important and mandatory to assess:

• Does the app embed the right protections?

• Are my protections triggered as expected?

• Are my sensitive assets protected enough?

• How long can my app withstand RE and/or attacks?

Paying for a pentest once or twice a year is definitely not enough!

Mobile app releases frequency is increasing

Keep up by integrating automated security testing into the CI/CD toolchain

OWASP FOUNDATION owasp.org

OWASP MASVS & MASTG

Dev Build Functional
Test

Security
Test

Acceptance
Test Deploy

OWASP FOUNDATION owasp.org

What it takes to protect and test a mobile
app

Dev Build Functional
Test

Security
Test

Acceptance
Test Deploy

• Implements security features

• Implements protections

• Leverages App Shielding and RASP
tools to integrate protections

• Commit/push/merge

Leverages App Shielding and
RASP tools to integrate
protections

Expected

✔ Security features work
✔ Runtime protections are

triggered
✔ Runtime and static protections

reduce REing capabilities

OWASP FOUNDATION owasp.org

Use case: a React-Native based Web3 Hot
Wallet app
Client A has a banking application that can be used as a crypto wallet:

“We did not protect the application, we only rely on the security features provided by the mobile
platform”

Mobile platforms’ security features:
• Application sandbox
• Biometric authentication
• Secure storage for storing cryptographic materials (KeyStore/Keychain)

The attack scenarios we proposed:
⇒ Your clients has been infected by a malware
⇒ one of your client got his device stolen

What can we do?

OWASP FOUNDATION owasp.org

Attack scenario: malware infection

Mobile platform security features Required malware features

Sandbox Embedded root/jailbreak exploits

Biometric authentication Bypass at runtime (app needs to be running)

KeyStore/Keychain Crypto materials interception at runtime

What does my malware need to attack the mobile application?

OWASP FOUNDATION owasp.org

Reverse Engineering & Code Tampering
Protecting the app logic is a recommendation in the OWASP Mobile Top 10

M8 – Code Tampering

Mobile code runs within an environment that is not under the control of the organization producing
the code. At the same time, there are plenty of different ways of altering the environment in which
that code runs. These changes allow an adversary to tinker with the code and modify it at will.

M9 – Reverse Engineering

Generally, most applications are susceptible to reverse engineering due to the inherent nature of
code. Most languages used to write apps today are rich in metadata that greatly aides a programmer
in debugging the app. This same capability also grealy aides an attacker in understanding how the
app works.

OWASP FOUNDATION owasp.org

Secure Local Storage & Cryptography
Insecure storage & Cryptography are even more important to consider

M2 – Insecure Data Storage

Insecure data storage vulnerabilities occur when development teams assume that users or malware
will not have access to a mobile device’s filesystem and subsequent sensitive information in
data-stores on the device. Filesystems are easily accessible. Organizations should expect a
malicious user or malware to inspect sensitive data stores. Usage of poor encryption libraries is to be
avoided. Rooting or jailbreaking a mobile device circumvents any encryption protections. When data
is not protected properly, specialized tools are all that is needed to view application data.

M5 – Insufficient Cryptography

In order to exploit this weakness, an adversary must successfully return encrypted code or sensitive
data to its original unencrypted form due to weak encryption algorithms or flaws within the encryption
process.

OWASP FOUNDATION owasp.org

Insecure Authentication
M4 – Insecure Authentication

Poor or missing authentication schemes allow an adversary to anonymously execute functionality
within the mobile app or backend server used by the mobile app. Weaker authentication for mobile
apps is fairly prevalent due to a mobile device’s input form factor.

OWASP FOUNDATION owasp.org

Reverse Engineering
What can I do to learn about the application?
• Download the application from the application store

• Unzip the code and resources inside the application package

• Use open-source tools to reverse engineer the code

What did we learn from the reverse engineering?
• The app is a React-Native based application 🡺 Hermes disabled 🡺 Minified JavaScript code is in plain text

• Local database is not encrypted but some sensitive data are

• SEED is encrypted
🡺 AES_KEY_1 = PBKDF2(HARDCODED_PASSWORD|USER_PASSWORD, SALT_1)

• USER_PASSWORD is encrypted
🡺 AES_KEY_2 = PBKDF2(HARDCODED_PASSWORD, SALT_2)

OWASP FOUNDATION owasp.org

Attack path

SEED

AES_KEY_1 AES_IV_1

HARDCODED_PASSWORD USER_PASSWORD SALT_1

AES_KEY_2 AES_IV_2

HARDCODED_PASSWORD SALT_2

OWASP FOUNDATION owasp.org

The risks

Mobile platform security
features

Required malware features Risks

Sandbox Embedded root/jailbreak
exploits

Exfiltrate database ⇒ decrypt SEED

Biometric authentication Bypass at runtime (app
needs to be running)

 ?

KeyStore/Keychain Crypto materials
interception at runtime

 ?

OWASP FOUNDATION owasp.org

Code Tampering at Runtime

Pros/Cons For developers For the attacker
Pros Only 1 programming language to learn for

implementing Android and iOS apps
Vulnerabilities are very likely to
be the same on Android and iOS

Cons Third-party libraries is not as rich as native ones Another layer to reverse
engineer

The best open-source tool for runtime code instrumentation ⇒ FRIDA

Problem ⇒ App is implemented using a framework for developing cross platform mobile
apps

Challenge ⇒ How to instrument with FRIDA this kind of application?

OWASP FOUNDATION owasp.org

How does a mobile app development
framework work?

Programming
Language
(e.g JavaScript, DART, etc.)

Step1: program Step 2: compile, bundle,
package

Step 3: load, interpret
at runtime

Interpreter

How do we attack this?
• Reverse engineer the interpreter, and find a vulnerability?
• Or is there an easier way? (Yes there is)

OWASP FOUNDATION owasp.org

Reverse Engineering of React-Native

Convert buffer to string

Pass the code to the
Interpreter

Interpreter

OWASP FOUNDATION owasp.org

FRIDA script to tamper with React-Native
code at runtime
function hookLibJSCFunctions(JSC) {
 //Set the address of the targeted function
 let JSStringCreateWithUTF8CString_addr = 0xBE18C

 //Hook the function
 Interceptor.attach(JSC.add(JSStringCreateWithUTF8CString_addr), {
 onEnter: function(args) {
 //Get the to-be-executed JavaScript code as a string
 let javascript_code = args[0]
 let c_string = Memory.readCString(ptr(javascript_code))

//Inject your malicious code
 let new_str = c_string.replace(PATTERN, MALICIOUS_CODE_TO_INJECT)

 //Store the new JavaScript code somewhere in memory
 let new_ptr = Memory.allocUtf8String(new_str)
 this.keep_this_ptr_alive = new_ptr

 //Replace the pointer to the new JavaScript code
 args[0] = new_ptr

 }
 },
 onLeave: function(ret) {}
 })
}

Only ~ 11 lines of code is
required to control a

React-Native based application

Works for Android and iOS.

OWASP FOUNDATION owasp.org

Code Instrumentation with FRIDA

function hookLibJSCFunctions(JSC) {
 //Set the address of the targeted function
 let JSStringCreateWithUTF8CString_addr = 0xBE18C

 //Hook the function
 Interceptor.attach(JSC.add(JSStringCreateWithUTF8CString_addr), {
 onEnter: function(args) {
 //Get the to-be-executed JavaScript code as a string
 let javascript_code = args[0]
 let c_string = Memory.readCString(ptr(javascript_code))

//Inject your malicious code
 let new_str = c_string.replace(PATTERN, MALICIOUS_CODE_TO_INJECT)

 //Store the new JavaScript code somewhere in memory
 let new_ptr = Memory.allocUtf8String(new_str)
 this.keep_this_ptr_alive = new_ptr

 //Replace the pointer to the new JavaScript code
 args[0] = new_ptr

 }
 },
 onLeave: function(ret) {}
 })
}

Only ~ 11 lines of code is
required to control a

React-Native based application

OWASP FOUNDATION owasp.org

Biometric Authentication Bypass and Fix

Bad KeyChain configuration leads to easy Biometric Authentication Bypass

OWASP FOUNDATION owasp.org

The risks

Mobile platform security
features

Required malware features Risks

Sandbox Embedded root/jailbreak
exploits

Exfiltrate database ⇒ decrypt SEED

Biometric authentication Bypass at runtime (app needs
to be running)

Sensitive operations (e.g:
transactions) are not anymore
protected behind bio. auth.

KeyStore/Keychain Crypto materials interception
at runtime

We can intercept any sensitive crypto
materials at runtime.

OWASP FOUNDATION owasp.org

Lessons learned
What are the issues:

• No rooted/jailbroken device detection

• No FRIDA (no runtime code tampering) detection

• No code integrity check

• Bad coding practice (logs the user password)

• Bad configuration of the keychain

• Insecure local storage

• Insecure cryptography

• No obfuscation

• Insecure React-Native configuration

OWASP FOUNDATION owasp.org

Lessons learned
What are the issues:

• No rooted/jailbroken device detection

• No FRIDA (no runtime code tampering) detection

• No code integrity check

• Bad coding practice (logs the user password)

• Bad configuration of the keychain

• Insecure local storage

• Insecure cryptography

• No obfuscation

• Insecure React-Native configuration

No need to go through a full
pentest to highlight those issues

OWASP FOUNDATION owasp.org

Lessons learned
What are the issues:

• No rooted/jailbroken device detection

• No FRIDA (no runtime code tampering) detection

• No code integrity check

• Bad coding practice (logs the user password)

• Bad configuration of the keychain

• Insecure local storage

• Insecure cryptography

• No obfuscation

• Insecure React-Native configuration

Dynamic
checks
(DAST)

Static
checks
(SAST)

OWASP FOUNDATION owasp.org

Conclusion

Keep up to date on
❏ OWASP Mobile Top 10,
❏ OWASP MASVS (if you are a developer, https://mas.owasp.org/MASVS/)
❏ OWASP MASTG (if you want to test your app, https://mas.owasp.org/MASTG/)

Foster DevSecOps ⇒ leverage MAST tools to automate your security testings and
improve your CI/CD

/!\ MAST tools are complementary to pentests /!\

Mobile App Sec technical know-how should be integrated in the dev teams

https://mas.owasp.org/MASVS/
https://mas.owasp.org/MASTG/

