OWASP France Meetup

Bordeaux - 22/02/2023

@DLUHSD@ OWASP FOUNDATION

> whois

Tiana (pronounced ‘Teen’/’Tine’)
Find me > @razaina

Former smart card security evaluator
Mobile Security Analyst @eshard

OWASP MAS-related tests developer for our SAST/DAST tool
OWASP Mobile Top 10 volunteer

esDynamic esChecker & TETRANE
» (< eShard byCVt.eShard Sty
Chip Mobile App Security
Security Security Testing
Testing Testing

OWASP FOUNDATION OWasp.org

How OWASP-compliant are Mobile Banking Apps in Europe?

100.00% :
o Q
0
= - - I L
- 75.00%] S = = -
g ¢ “Fr : S==] ; |
3 - opm 1V I I : Q N L7
. g “an, © ; » Q 2] IS
= 120 apps automatically tested g = = 0
. 9 3
=> 0 are OWASP-compliant B - opm 1F Q
g 50.00% —
Py Q 11 Q
Should we worry? : G
“ — 9—
3 0
> 25.00%
T
0.00%
0.00% 25.00% 50.00% 75.00% 100.00%
How resilient is the app against attacks (OWASP MASVS R)

src: White paper on “European Mobile Banking Apps Security Benchmark”, eShard.

OWASP FOUNDATION OWasp.org

Why should we care?

When was the last time you unlocked your phone?

them.

The mobile app is an entry point
o To remote servers 3. Approximately 90% of Users Use Mobile Banking Apps to

View Their Account Balance

' .
o To the end-user’s device
What many might find surprising is that people don't primarily use mobile banking

apps to pay bills or transfer funds, as these actions come later. Instead, one of the

The risks:
o From the user perspective, e.g: personal data i
4. 97% of Millennials and 89% of Consumers Rely on Mobile
loss/leakage (bank account, password, etc.) Banking Apps

© From the bUSIneSS perspeCtlve: Mobile banking applications continue to evolve with the passage of time and
m Data leakage s e

m Intellectual property

m Business model impact:
e Adsremoval
® Premium features enabled for everyone
® Game cheats

m Overall reputation

OWASP FOUNDATION OWasp.org

https://www.storyly.io/post/10-statistics-mobile-banking-finance-app

How can we limit those risks?

[d Be at least compliant with existing standards, e.g: OWASP Mobile Application Security Verification Standard
(MASVS)

[d Pentesting the app is costly, but automated compliance processes can lower the overall costs
(A Continuous Integration/Continuous Delivery (CI/CD) is already well known in DevOps
= Why not include Mobile Application Security Testing (MAST) as well?

= Foster DevSecOps culture to become more agile and respond more quickly to change and innovation

OWASP FOUNDATION OWasp.org

Introduction to CI/CD

Continuous Integration Continuous Deployment/Delivery
Merge all code and automatically build the app Automatically deploy new app to prod
throughout the day

Functional Security Acceptance

Test Test Test

OWASP FOUNDATION OWasp.org

Introduction to Continuous Testing (CT)

neke s e
w PN ARy, v
BRANCH DeRe)
¢ (Dev @)
e % i
mek(ﬁ\’ R MIONTeRS OF CoutsE
AH'&E) AnD we) X ggg’fw:e&’
Tesr Hele of Covlsc
Wt Can'

Src: Dan Ashby

OWASP FOUNDATION OWasp.org

https://danashby.co.uk/2016/10/19/continuous-testing-in-devops/

Why should you integrate MAST in your
Cl/CD?

Pentests are still very important and mandatory to assess:
* Does the app embed the right protections?
* Are my protections triggered as expected?
* Are my sensitive assets protected enough?

* How long can my app withstand RE and/or attacks?
Paying for a pentest once or twice a year is definitely not enough!
Mobile app releases frequency is increasing

Keep up by integrating automated security testing into the CI/CD toolchain

OWASP FOUNDATION OWasp.org

OWASP MASVS & MASTG
MASVS | MASTG

Mobile Application Security Mobile Application Security
Verification Standard Testing Guide

Sven Schleier Carlos Holguera Sven Schleier Carlos Holguera
Bernhard Mueller Jeroen Willemsen @DLURSP Bernhard Mueller Jeroen Willemsen @DLUHSP

Functional Security Acceptance
Test Test Test

OWASP FOUNDATION owasp.org

What it takes to protect and test a mobile

app

« Implements security features Leverages App Shielding and
RASP tools to integrate
* Implements protections protections

» Leverages App Shielding and RASP
tools to integrate protections

« Commit/push/merge

OWASP FOUNDATION OWasp.org

SN

Security
Test

I
I
Exp?cted

Security features work
Runtime protections are
triggered

Runtime and static protections
reduce REing capabilities

Use case: a React-Native based Web3 Hot
Wallet app

Client A has a banking application that can be used as a crypto wallet:

“We did not protect the application, we only rely on the security features provided by the mobile
platform’

Mobile platforms’ security features:
* Application sandbox
* Biometric authentication

* Secure storage for storing cryptographic materials (KeyStore/Keychain)

The attack scenarios we proposed:
= Your clients has been infected by a malware
= one of your client got his device stolen

OWASP FOUNDATION OWasp.org

Attack scenario: malware infection

What does my malware need to attack the mobile application?

Mobile platform security features Required malware features
Sandbox Embedded root/jailbreak exploits
Biometric authentication Bypass at runtime (app needs to be running)
KeyStore/Keychain Crypto materials interception at runtime

OWASP FOUNDATION OWasp.org

Reverse Engineering & Code Tampering

Protecting the app logic is a recommendation in the OWASP Mobile Top 10

@DLUHSD@ M8 — Code Tampering

Mobile code runs within an environment that is not under the control of the organization producing
the code. At the same time, there are plenty of different ways of altering the environment in which
that code runs. These changes allow an adversary to tinker with the code and modify it at will.

@DUJF]SP@ M9 — Reverse Engineering

Generally, most applications are susceptible to reverse engineering due to the inherent nature of
code. Most languages used to write apps today are rich in metadata that greatly aides a programmer
in debugging the app. This same capability also grealy aides an attacker in understanding how the

app works.

OWASP FOUNDATION OWasp.org

Secure Local Storage & Cryptography

Insecure storage & Cryptography are even more important to consider

@DLUHSD@ M2 — Insecure Data Storage

Insecure data storage vulnerabilities occur when development teams assume that users or malware
will not have access to a mobile device’s filesystem and subsequent sensitive information in
data-stores on the device. Filesystems are easily accessible. Organizations should expect a
malicious user or malware to inspect sensitive data stores. Usage of poor encryption libraries is to be
avoided. Rooting or jailbreaking a mobile device circumvents any encryption protections. When data
is not protected properly, specialized tools are all that is needed to view application data.

@BC]LLJHSD® M5 — Insufficient Cryptography

In order to exploit this weakness, an adversary must successfully return encrypted code or sensitive
data to its original unencrypted form due to weak encryption algorithms or flaws within the encryption
process.

OWASP FOUNDATION OWasp.org

Insecure Authentication

@DLUHSD@ M4 — Insecure Authentication

Poor or missing authentication schemes allow an adversary to anonymously execute functionality
within the mobile app or backend server used by the mobile app. Weaker authentication for mobile
apps is fairly prevalent due to a mobile device’s input form factor.

OWASP FOUNDATION OWasp.org

Reverse Engineering

What can | do to learn about the application?
* Download the application from the application store

* Unzip the code and resources inside the application package

* Use open-source tools to reverse engineer the code

What did we learn from the reverse engineering?
* The app is a React-Native based application [1 Hermes disabled [Minified JavaScript code is in plain text

* Local database is not encrypted but some sensitive data are

* SEED is encrypted
0AES _KEY_1=PBKDF2(HARDCODED PASSWORD|USER PASSWORD, SALT 1)

* USER PASSWORD is encrypted
0AES _KEY 2 = PBKDF2(HARDCODED PASSWORD, SALT 2)

OWASP FOUNDATION OWasp.org

Attack path

#AES KEY_1 AES_IV_1

HARDCODED PASSWORD USER_PASSWORD SALT 1
%ES KEY 2 AES_IV_2
HARDCODED PASSWORD SALT 2

OWASP FOUNDATION OWasp.org

The risks

Mobile platform security Required malware features Risks
features
Sandbox Embedded root/jailbreak Exfiltrate database = decrypt SEED
exploits
?
?

OWASP FOUNDATION OWasp.org

Code Tampering at Runtime

The best open-source tool for runtime code instrumentation = FRIDA

Problem = App is implemented using a framework for developing cross platform mobile

apps
Pros/Cons For developers For the attacker
Pros Only 1 programming language to learn for Vulnerabilities are very likely to
implementing Android and iOS apps be the same on Android and iOS
Cons Third-party libraries is not as rich as native ones Another layer to reverse
engineer

Challenge = How to instrument with FRIDA this kind of application?

OWASP FOUNDATION OWasp.org

How does a mobile app development
framework work?

Interpreter

XU A 011011 0110110(9@
] 9 9 o1101 18 011011
anguage 01110 01110 Q
(e.g JavaScript, DART, etc.) 011001 01100

Step1: program Step 2: compile, bundle, Step 3: load, interpret
package at runtime

How do we attack this?
* Reverse engineer the interpreter, and find a vulnerability?
« Oris there an easier way? (Yes there is)

OWASP FOUNDATION OWasp.org

Reverse Engineering of React-Native

If]tEBrF)rEBtEEr ie: :evaluateJavaScript
ed_ptr< st jsi::Buffer> &buffer,
011011@ 5 ol cniirceal IR 3
std::string tmp(
9110111 int ' t<cC t C *>(buffer->data , buffer->size()); Convert buffer tO String
0111 @ JSStringRef sourceRef = JSStringCreateWithUTF8CString(tmp.c_str());
) JSS5TringKeT SOurceukLReT = nul x
0110 , if (!sourceURL.empty()) {
sourceURLRef = JSStringCreateWithUTF8CString(sourceURL.c_str

ValueRef res = Pass the code to the

JS sourceRef, 11ptr, sourceURLRef, 0, &exc);
Wi) Interpreter
if (sourceURLRef) {

JSStringRelease(sourceURLRef);
}

checkException(res, exc);
return createValue(res);

OWASP FOUNDATION OWasp.org

FRIDA script to tamper with React-Native
code at runtime

function hookLibJSCFunctions(JSC) {
//Set the address of the targeted function
let JSStringCreateWithUTF8CString_addr = ©xBE18C

//Hook the function
Interceptor.attach(JSC.add(JSStringCreateWithUTF8CString_addr), {

onEnter: function(args) {
//Get the to-be-executed JavaScript code as a string

let javascript_code = args[@] . .
let c_string = Memory.readCString(ptr(javascript_code)) Only ~ 11 lines of code is
//Inject your malicious code reqUIred tO ContrOI d

let new_str = c_string.replace(PATTERN, MALICIOUS_CODE_TO_INJECT) S ReaCt'Native based application
//Store the new JavaScript code somewhere in memory

let new_ptr = Memory.allocUtf8String(new_str) . .
this.keep_this_ptr_alive = new_ptr Works for Android and iOS.

//Replace the pointer to the new JavaScript code
args[@] = new_ptr

}

onLeave: function(ret) {}

1)

} —

OWASP FOUNDATION OWasp.org

Code Instrumentation with FRIDA

function hookLibJSCFunctions(JSC) {
//Set the address of the targeted function
let JSStringCreateWithUTF8CString_addr = ©xBE18C

023-01-25T16:42:07.891Z [INFO] L IDA > PASSWORD: EJmiT%qGHShETRU.:Ei_‘M '—FvF DHH-“HﬂLHihHsTLUﬁf”_C_n[FUkFHF”H SALT

2023—01—25T|6'42:37.°“1Z [INFO] LIDA > Generate key with { lﬂ ssword"”: "E4m$ 7%qGKsK67Rv.C8CuU! Z9w8%! - KSPXDWu - AnakH$ hHWY kU(

cPGRUU", "salt": "xd+BalQJrse96s+Rqd4Zw7A=="} key object C: ot
2023-01-25T16:42:07.933Z [IHFI.-.'] IDA ==> CALLING [Y61k 06 ﬁ’j) vith arg: [object Object]

2023-01-25T16:42:07.934Z [INFO] L IDA > Get Encrytpe =MOTTIC

12023-01-25T16:42:07.935Z [INFO] L IDA > DECRYPT HHEHHHII 1111

2023-01-25T716:42:07.935Z [INFO] LIDA > PASSWORD: E4m$7%qGKsK67Rv.CBCuU! Z9wB%! - KSPXDWu-AnakH$ hHWYkU@SN3C?WDRUCPGRUuU: [ob je
SALT: WTwmreBncOc1fJsx6RZjmA==

12023-01-25T16:42:07.935Z [INFO] L IDA > Generate key with {"password": "E4m$7%qGKsK67Rv.C8Cu!Z9w8%! - KSPXDWu-AnakH$hHWYkUG

cPGRUu: [object Object]”, "salt": "WTwmreBncOc1fJsx6RZjmA=="} key = [object Object]

2023-01-25T16:42:07.942Z [INFO] FRIDA ==> : copy glow light build web dress pulse toast oyster wrestle ci

rt

om AsyncStorage.

¥

onLeave: function(ret) {}

1)
}

OWASP FOUNDATION OWasp.org

Biometric Authentication Bypass and Fix

Bad KeyChain configuration leads to easy Biometric Authentication Bypass

acce551ble Keychain.ACCESSI \Hr‘ N UNLOCKED THIS_ _DEVIC

accessControl: Keychain.?

il

OWASP FOUNDATION OWasp.org

The risks

Mobile platform security Required malware features Risks
features

Sandbox Embedded root/jailbreak Exfiltrate database = decrypt SEED
exploits

Biometric authentication |Bypass at runtime (app needs Sensitive operations (e.q:
to be running) transactions) are not anymore

protected behind bio. auth.

KeyStore/Keychain Crypto materials interception |We can intercept any sensitive crypto

at runtime materials at runtime.

OWASP FOUNDATION OWasp.org

Lessons learned

What are the issues:

« No rooted/jailbroken device detection

* No FRIDA (no runtime code tampering) detection
« No code integrity check

* Bad coding practice (logs the user password)

« Bad configuration of the keychain

* Insecure local storage

 Insecure cryptography

« No obfuscation

« Insecure React-Native configuration

OWASP FOUNDATION OWasp.org

Lessons learned

What are the issues:
« No rooted/jailbroken device detection
* No FRIDA (no runtime code tampering) detection

« No code integrity check
* Bad coding practice (logs the user password) No need to go through a full

« Bad configuration of the keychain pentest to hlghllght those issues

* Insecure local storage
* Insecure cryptography
* No obfuscation

« Insecure React-Native configuration

OWASP FOUNDATION OWasp.org

Lessons learned

What are the issues:

« No rooted/jailbroken device detection

* No FRIDA (no runtime code tampering) detection { Dynamic
« No code integrity check checks

* Bad coding practice (logs the user password)) (DAST)

« Bad configuration of the keychain)

* Insecure local storage Static
 Insecure cryptography a checks

« No obfuscation (SAST)

« Insecure React-Native configuration /

OWASP FOUNDATION OWasp.org

Conclusion

Keep up to date on

1 OWASP Mobile Top 10,

1 OWASP MASVS (if you are a developer, https://mas.owasp.org/MASVS/)

1 OWASP MASTG (if you want to test your app, https://mas.owasp.org/MASTG/)

Foster DevSecOps = leverage MAST tools to automate your security testings and
improve your CI/CD

/!\ MAST tools are complementary to pentests /!\

Mobile App Sec technical know-how should be integrated in the dev teams

OWASP FOUNDATION OWasp.org

https://mas.owasp.org/MASVS/
https://mas.owasp.org/MASTG/

