

(

®* 0x2C

®* 0x30 Web

®* 0x40 Windows APl anc

®* 0x50 Wrapping up

OX01 CODING FOR PENTESTERS

® Current state of the art languages for pentesting
® Python (sqlmap, OWASP OWTF, pwntools, pwndbg)
®* Ruby (Metasploit framework, beef,

® Perl (enum4linux, fierce)

® Problems:
®* Dependencies

® Cross-Plattform Compatibility
* Speed

0X02 WHY GOg¢

® easy to learn (easy-ish syntax)

* Static types + implicit types supported

®* Compiles to native, statically linked binaries
® Built-in cross-compilation

® Concurrency is fairly straight forward

® Great toolchain

®* Great Stdlib

®* Low memory profile

0X03 THE DOWNSIDES

®* No immutable package repository
® Ecosystem not as mature as python’s

® Large binaries

* Can be solved by stripping / packing

® Very reliant on Github (and other VCS)

https://www.golang.org/
https://tour.golang.org/welcome/1
https://golang.org/doc/effective_go.html

0X05 OFFENSIVE TOOLS IN GO

® GoBot2 (https://github.com /SaturnsVoid /GoBot2)

® GoAT (https://github.com /petercunha/GoAT)

* Gobuster (https://github.com /OJ /gobuster)

* Cracklord (https://github.com /jmmcatee /cracklord)

® GoCrack (https://github.com /fireeye /gocrack)

® Bettercap 2.0 (https://github.com /bettercap /bettercap)
* Merlin (https://github.com /NeOndOg /merlin)

® Vuls (https://github.com /future-architect /vuls)

® ... many more (https://github.com /topics/pentesting2l=go)

1\\5 OX11 HELLO WORLD

package main<v\\\\\\\\\\

import (g
"t " Package declaration
"strconv"

"strings” ‘\\“\\\\

} Imports

func main() {
stringVar := "Hello World!"
intvar := 5
var (Variable declarations
intVarz2 int

stringVar2 string
)

intvarz = 10 — Repeating strings
stringVar2 = strings.Repeat(stringVar, intVar2)

fmt.Printf("intVar has value %=d\n", intVar)
fmt.Printf("string¥ar has value %s\n", stringVar) -
fmt.Printf("stringVar2 has value %s\n", stringVar2) Formatted printing

var arrayVar = []lstring{ <-_____-‘~‘~ . e .
“Hello ", Array declaration / initialization
"World",

} .

arrayVar = append(arrayVar, "!") /Appendmg i el

for idx, element := range arrayVar { A
fmt.Println(strconv.Itoa(idx) + " - " + element) Looplng over arrays

}

fmt.Println(strings.Join(arrayvar, "")|)

Joining strings

0X20 SIMPLE TCP SCANNER

® Basic network tool

® Full TCP Handshake

®* Open connection to each port

® If a connection is established, the port is treated as open

® Concurrency can be added easily

O0X21 EXECUTING SHELL COMMANDS

* Standard library: os/exec

® https://godoc.org/os/exec

®* Commands are passed as array

®* Arguments and values must be passed separately for commands to work

correctly

® Environment variables can be passed via array cmd.Environ

https://godoc.org/os/exec

O0X21 SIMPLE REVERSE SHELL

® Remote shell, that connects back to a server

Runs /bin/bash on successful connection

Provides remote access to compromised system

Easier to bypass firewalls

® |In Go:
®* Open socket
* Execute /bin/bash
* copy stdout/stdin of the shell to the socket

0X23 REMOTE BUFFER OVERFLOW EXPLOIT

® Buffer overflow are not that common today
* Still good for examples and demonstration

* Step by step walkthrough of exploiting a remote buffer overflow in vulnserver
with Go

* vulnserver: https:/ /github.com /stephenbradshaw /vulnserver

L=l IR = N L

=
W p =@

=]
.

e
I R
@2 WD 00 =~ On Ln

package main

import (
lfm-t m
"io/ioutil"”
I'Lngll
"net/http"
)

func main() {

url := "https://google.de"
res, err := http.Get(url)
if err != nil [

log.Fatal({err)
H

defer res.Body.Close()
body, err := ioutil.ReadAll(res.Body)

fmt.Println(string(body))

0X33 CLONING CEWL

®* Commonly used tool to crawl websites

®* Generates dictionaries for offline and online cracking
® Written in Ruby

® It’s nice, but it’s slow

® Latest version broken due to dependencies

0X41 ACCESSING THE WINDOWS API

* Standard library: sys/windows
® (Linux only) Must installed via go get golang.org/x/sys/windows
®* Many syscalls are implemented as part of the library

® Can also load arbitrary DLLs to lookup functions
® (Must)LoadDLL
®* LazyDLL(System)

0X42 READING REGISTRY ENTRIES

* Standard library: sys/windows/registry

® (Linux only) Must installed via go get

golang.org/x/sys/windows/registry
® Registry Keys are treated as files

® Perfect for post exploitation on windows systems
* AlwayslnstallElevated

® Service Binaries

0X43 USING WMI

®* Not in the standard library, but available at:
https: / /github.com /StackExchange /wmi

® Install go get —u github.com/StackExchange /wmi
® Interfaces with the local wmi service (currently no remote support)
® Can be used to script post-exploitation enumeration

* Alternative to powershell /python, as no dependencies are required on the

tfarget

https://github.com/StackExchange/wmi

0X43 ENCRYPTED SHELLCODE INJECTOR

AV Detection can be a massive “put back” during a pentest engagement

® Solutions exist, but evasion can be difficult

® Stubs are mostly known to AV vendors

* Solution is based on work from the veil framework

®* Makes use of the win32-API to inject shellcode into the running process

® Includes server to deliver executables directly over http

Planned features: migration / foreign process injection, process hollowing, user agent parsing

® Open Source (soon @ https://github.com /kevin-ott /meeseeks)

0X43 ENCRYPTED SHELLCODE INJECTOR

E - Write
Build shellcode with neryptr encrypted »go build" the
shellcode with
msfvenom shellcode to executable
AES256
template

OX51 TAKE AWAYS

®* Go is a great language for pentesting and offensive tasks

® |t's best suited for tools, not for PoCs

® It is not (yet) ready to replace Python, Ruby, Perl... in this domain
® Addition to the existing toolchain

® Contributel

https://github.com/shellhunter/offensive-go
https://github.com/shellhunter/meeseeks
https://github.com/shellhunter/gocewl

THA

TWITTER: @KEVINC

GITHUB: GITHUB.COM/SHELLHUNTE

r

