BUILDING SECURE MOBILE APPS

(YOU DON'T HAVE TO LEARN IT THE HARD WAY)

SVEN SCHLEIER AND CARLOS HOGUERA
OWASP STAMMTISCH HAMBURG JAN 2021

$ /USR/BIN/WHOAMI

Hi everyone, my name is Sven!

» Previous roles: Unix Admin, Penetration Tester, Security Architect for Web
and Mobile Apps during SDLC

» Now Security Architect in ‘® Singapore
» Project leader together with Carlos Holguera of:
» OWASP Mobile Security Testing Guide (MSTG) and
» OWASP Mobile AppSec Verification Standard (MASVS)

» Blogging on http://bsddaemonorg.wordpress.com/

http://bsddaemonorg.wordpress.com/

$ /USR/BIN/WHOAMI

Hola, my name is Carlos!

» Security Engineer & Technical Lead in Berlin:
» Mobile & Automotive Security Testing
» Security Testing Automation
» Project leader together with Sven Schleier of:
» OWASP Mobile Security Testing Guide (MSTG) and

» OWASP Mobile AppSec Verification Standard (MASVS)

AGENDA

OWASP MOBILE APPSEC VERIFICATION STANDARD (MASVS)
OWASP MOBILE SECURITY TESTING GUIDE (MSTG)

DEMOS

QUIZ TIME!

LET ME ASK YOU SOME QUESTIONS FIRST!

Go to www.menti.com and use the code 5192 84 2

SECURE APPS?

Checklist

V] A

V] B

%] C

https://github.com/OWASP/owasp-masvs/releases
https://github.com/OWASP/owasp-masvs/releases
https://github.com/OWASP/owasp-mstg/
https://github.com/OWASP/owasp-mstg/
https://github.com/OWASP/owasp-mstg/tree/master/Checklists
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

OWASP MOBILE APPSEC VERIFICATION STANDARD (MASVS)

MOBILE APPSEC VERIFICATION STANDARD (MASVS)

THE MASVS IS A STANDARD THAT DEFINES THE
SECURITY REQUIREMENTS APPLICABLE FOR
MOBILE APPS AND IS 0S AGNOSTIC.

Translations available:
» Chinese (Traditional and Simplified)

» Farsi (Persian)

MASVS

» French

» German

Creative Commons (CC) Attribution Share-Alike
Free version at http:fwww.owasp.org

» Hindi
» Japanese
» Korean

» Portugese (inca. Brazilian Portugese)

» Russian

anish
https://qithub.com/OWASP/owasp-masvs#qetting-the-masvs > 3P

https://github.com/OWASP/owasp-masvs#getting-the-masvs

MSTG-ID

MSTG-NETWORK-1

MSTG-NETWORK-2

MSTG-NETWORK-3

MSTG-NETWORK-4

MSTG-NETWORK-5

MSTG-NETWORK-6

Description

Data is encrypted on the network using TLS. The secure channel is used
consistently throughout the app.

The TLS settings are in line with current best practices, or as close as
possible if the mobile operating system does not support the
recommended standards.

The app verifies the X.509 certificate of the remote endpoint when the
secure channel is established. Only certificates signed by a trusted CA
are accepted.

The app either uses its own certificate store, or pins the endpoint
certificate or public key, and subsequently does not establish
connections with endpoints that offer a different certificate or key, even
If signed by a trusted CA.

The app doesn't rely on a single insecure communication channel (email

or SMS) for critical operations, such as enrollments and account
recovery.

The app only depends on up-to-date connectivity and security libraries.

https://github.com/OWASP/owasp-masvs/blob/master/Document/0x10-V5-Network_communication_requirements.md
https://github.com/OWASP/owasp-masvs/blob/master/Document/0x10-V5-Network_communication_requirements.md

MOBILE APPSEC VERIFICATION STANDARD (MASVS) 11

KEEPING THINGS FLEXIBLE: REQUIREMENT “LEVELS

e.g. Banking Apps
e.g. Game Apps

e.g. Health Apps
L1 — Standard Security

All mobile apps

https://qithub.com/OWASP/owasp-masvs/blob/master/Document/0x03-Using the MASVS.md#verification-levels-in-detail

https://github.com/OWASP/owasp-masvs/blob/master/Document/0x03-Using_the_MASVS.md#verification-levels-in-detail

MOBILE APPSEC VERIFICATION STANDARD (MASVS) 12

HOW TO USE THE MASVS?

» The levels and it's requirements are a baseline that need to be tailored to your needs.

» Don't blindly follow the requirements!
» Requirements might be missing (e.g. regulations in your country/industry)

» Requirements might not be applicable (or you may want to accept the risk)

» Usage ensures consistency of mobile app security when developing / testing an app

» Can be part of your threat model to select the requirements that address your gaps!

https://www.owasp.org/index.php/Main_Page

MOBILE APPSEC VERIFICATION STANDARD (MASVS)

WHERE CAN I GET IT?

» Github - http://bit.ly/2uMFEDiY

» Gitbook - http://bit.ly/30kZPnW

» Releases - http://bit.ly/2NqgspPc

» Download it

Creative Commons (CC) Attribution Share-Alike
Free version at http:f www.owasp.org

» Read it
» Use it

» Give Feedback and create an issue!

https://www.owasp.org/index.php/Main_Page
http://bit.ly/2uMFDiY
http://bit.ly/30kZPnW
http://bit.ly/2NqspPc

MOBILE APPSEC VERIFICATION STANDARD (MASVS)

14

» A new release (Version 1.3) is in the
making and will be published soon!

a A L

Creative Commons (CC) Attribution Share-Alike
Free version at http:f www.owasp.org

https://www.owasp.org/index.php/Main_Page

OWASP MOBILE SECURITY TESTING GUIDE (MSTG)

15

MOBILE SECURITY TESTING GUIDE (MSTG)

16

THE MSTG IS A COMPREHENSIVE MANUAL FOR MOBILE APP

@oueer SECURITY TESTING AND REVERSE ENGINEERING.
T DESCRIBES TECHNICAL PROCESSES FOR VERIFYING THE
o CONTROLS LISTED IN THE MASVS:
. MSTG

https://qithub.com/OWASP/owasp-msta/#reading-the-mobile-security-testing-quide

https://github.com/OWASP/owasp-mstg/#reading-the-mobile-security-testing-guide

MOBILE SECURITY TESTING GUIDE (MSTG)

17

STRUCTURE OF A TEST CASE IN THE MSTG

Overview Static Analysis (here you will Dynamic Analysis
also find the best practice)

Example: Testing iOS WebViews - http://bit.ly/3cjH4sX

http://bit.ly/3cjH4sX

MASVS @ouwnsp

6.5 MSTG-PLATFORM-5 JavaScriptis disabled in WebViews unless explicitly required.

sEnumerating WebView Instances

Once you've identified a WebView in the app, you may inspect the heap in order to find instances of one or several of the
WebViews that we have seen above.

For example, if you use Frida you can do so by inspecting the heap via "ObjC.choose()"

ObjC.choose(0bjC.classes['"UIWebView'], {
onMatch: function {ui) {
console.log('onMatch: ', ui),;
consale. log(" URL : ui.request().taString());

.
3
.=b J

onComplete: function () {

consvule. log('done for UlWebView!');

ObjC.choose(0ObjC.classes["WKWebView'], {
onMatch: function {wk) {
console.log('onMatch: ', wk);
console.log('URL: ", wk.URL().toString());

MOBILE SECURITY TESTING GUIDE (MSTG)

WHERE CAN I GET IT?

» Github - http://bit.ly/381ZRn9

» Gitbook - http://bit.ly/36Qr2Rz
_qreturn TH1>-- ‘
‘t',ltr “e'. .
I 4 » Releases - http://bit.ly/2Rdef57
T +3
SO
‘[dé
S(*L
deg
. MSTG N
.-,:E. MOBILE } OWn Oa It
ctior SECURITY
aptio) TESTING .
- » Read it
t5:8target s |
l’““j’““ ‘s.o:: Bernhard Mueller)
Bt gy Sensceer » Use it

. SEP Carlos Holguera
e The OWASP mobile team

» Give Feedback and create an issue!

http://bit.ly/381ZRn9
http://bit.ly/36Qr2Rz
http://bit.ly/2Rdef57

HANDS-ON

20

TESTING 10S APPS 21

HOW DOES A PENETRATION TESTER EXECUTE A TEST FOR AN 10S APP?

Jailbroken Device Dynamic instrumentation

» Works on (non-)jailbroken devices
» Manipulate runtime behaviour of
an app through Frida

» Cydia App Store

» Full Root Access

See also: » Frida iOS: https://www.frida.re/docs/ios/

» iOS Basic Security Testing: https://bit.ly/2IHdGoj

» iOS Dynamic Testing on non jailbroken device: https://bit.ly/21G7K{7

https://www.frida.re/docs/ios/
https://bit.ly/2lHdGoj
https://bit.ly/2lG7Kf7

E objection - Runtime Mobile Exploration

objection isaruntime mobile exploration toolkit, powered by Frida, built to help you assess the security
posture of your mobile applications, without needing a jailbreak.

pypi package 1.9.6 W Black Hat Arsenal Europe 2017 | Black Hat Arsenal USA 201¢

* Supports both iOS and Android
+ Inspect and interact with container _ B D E I E [T | D N
file systems. , r . ——
Bypass SSL pinning. . E LI H T I H E
Dump keychains. l—l . H ﬂ E I L E
« Perform memory related tasks, I_I_I_n E :l: F L ﬂ E u T I ﬂ H
such as dumping & patching. _—
« Explore and manipulate objects on | E I T. I u 'ﬂl u H]. E [T I u H

the heap.

« And much, much more...

installation

Installation is simply a matter of pip3 install objection . This will give youthe objection command.
You can update an existing objection installation with pip3 install --upgrade objection .

https://github.com/sensepost/objection
https://github.com/sensepost/objection/wiki/Installation

objection -g i0S-Shack explore

000 2

info.s7ven. ios.shack on (iPhone: 12.4) [usb] # exit

Exiting...
Asking jobs to stop...
Unloading objection agent...
2m 25 @ base

~) objection —g i0S-Shack explore

DETECTING SENSITIVE INFORMATION

24

WHAT ABOUT 105 DEVS? THEY DON'T USUALLY HAVE A JAILBROKEN PHONE AND FRIDA

DOESN'T SEEM TO FIT FOR THEM. THERE SHOULD BE A MORE EASY WAY, RIGHT?

Use the tools you already have: Xcode
and iOS Simulator

v B MSTG-JWT M
[MSTG-JWT.xcdatamodeld
B hack.html

» You have full access to the file
system of the iOS Simulator EL"I;T’:L‘SZ'.';':“ -
B Launch.:.:::.storyboard

B Info.plist

B ProfileviewController.swift

B LoginViewController.swift M
_. WebViewController.swift

=» Documents pwd
/Users/sven/Library/Developer/CoreSimulator/Devices/B13C39D7-F7F8-45D9-AB82-2A35D754F284/data/Containers/Data/
Application/8CE68F72-608B-44FB-AF8D-C31E13C2B406/Documents
=» Documents l1s
JWT.plist
«» Documents cat JWT.plist
<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertylList-1.0.dtd">
<plist version="1.0">
<dict>
<key>token</key>
<string>eyJhbGci01JIUzIIN1]9. ey]1c2VyX21kIjoxLCI1bWFpbCI6ImZvbyIsImV4cCIGMTU20DIZMDCOMHO . 288NMb4vSBFXA
169apmVHTyVjLCHHXG8Y2PBt2K1])pg</string>
</dict>
</plist>
- Documents [

0O N OO O -

| o000) B /- .MSTG-JWT) ¥ iPhone X
H 2 Q A © =2 o B H <

Running M*

E] MSTG-JWT) . MSTG-JWT) a AppDelegate.swift) No Selection
//
// AppDelegate.swift
// MSTG-JIWT
//
// Created by Sven Schleier on 27/12/17.
// Copyright © 2017 Sven Schleier. All rights reserved.
//
import UIKit

import CoreData

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

func application(_ application: UIApplication, didFini:

// Override point for customization after applicat
return true

}

Frimn annlinatianliiT11IDacs mnAndsunl annlsnatsanes HITAnnl

MSTG-JWT

DETECTING SENSITIVE INFORMATION 25

- @ | sven@Mobile-Training: ~ ol
~> R @ base

8:33 PM

I0S Shack App

How to
analyse local
storage of an
1OS App
(Developer
Perspective)

Created by Sven Schleier

DETECTING SENSITIVE INFORMATION

WHAT ABOUT 10S DEVS? THEY DON'T USUALLY HAVE A JAILBROKEN PHONE AND FRIDA DOESN'T
SEEM TO FIT FOR THEM. THERE SHOULD BE A MORE EASY WAY, RIGHT?

Every app and simulator gets a random 128-bit UUID (Universal Unique Identifier) assigned during installation for
its directory names. When using the iOS Simulator the path is:

~/Library/Developer/CoreSimulator/Devices/<Device-UUID>/data/Containers/Data/Application/<App-UUID>

A very handy way to open the data directory of our app running in the current simulator in Finder is the following:

The bundle name would need to be explicitly specified, which is info.s7ven.ios.data in this case.

See also:
https://mobile-security.gitbook.io/mobile-security-testing-guide/ios-testing-guide/0x06d-testing-data-storage#dynamic-analysis-with-xcode-and-ios-simulator

https://mobile-security.gitbook.io/mobile-security-testing-guide/ios-testing-guide/0x06d-testing-data-storage#dynamic-analysis-with-xcode-and-ios-simulator

DETECTING SENSITIVE INFORMATION

27

HOW TO DO IT RIGHT?

First reflect: Is it really necessary to store sensitive information on the device? If so, use the
following:

Keychain (small bits of data)

» The iOS Keychain can be used to securely store short, sensitive bits of data, such as
encryption keys and session tokens. It is implemented as an SQLite database that can
be accessed through the Keychain APls only.

IOS Data Protection APls

» App developers can leverage the iOS Data Protection APIls to implement fine-grained
access control for user data stored on the device.

Fingerprint / facial data is stored in the Secure Enclave which is part of the processor of an
iOS device (during calibration).

The provided data (fingerprint / facial data) is sent to the Secure Enclave and compared with
the stored data to authenticate the user.

An iOS app can confirm via the LocalAuthentication (LAContext) helper class to confirm the
devices passphrase, Touch ID or Face ID.

User space Operating system Secure Enclave

Biometry

Yourapp <—————— LocalAuthentication <———>

Credential
management

BIOMETRIC AUTHENTICATION

BYPASSING TOUCH 1D THE EASY WAY....
Ll —

S - - . r j..___._[
— R, —— " — I A % - ’ N — — > -—— o — —
. !
- — | — e e - - N — S ——
e —"

.
. e Y em—

BIOMETRIC AUTHENTICATION 30

® © 06 1. sven@Trainings-MacBook-Pro-2: ~ zsh)
X .L. @ 31 ‘ X u. 32 | X .i. @ 83 [X 0. @ 384 | X .e. @ 345 X .a. @ #¥6 | X .inin.. 3¥7 X .c.. @ #¥8 | X ~(zsh) %9

BYPASSING TOUCHID ~

|

Find Friends

& =

BIOMETRIC AUTHENTICATION

31

HOW TO DO IT RIGHT?

» 2 different implementations are available:

U
>
b
)
D
J
D
3
D
)

U
J
D
>
J
D
)

4

» LAContext together with KeyChain Services

» App stores either a secret authentication token or
another piece of secret data identifying the user in
the Keychain.

» Avalid set of biometrics must be presented before
the key is released from the Secure Enclave to
decrypt the keychain entry itself.

» This solution cannot be bypassed (even on
jailbroken devices), as the verification is done within
the Secure Enclave (SE).

User space Operating system Secure Enclave

Your app Biometry

Credential

c : 5 LocalAuthentication c : S
: : management

framework

Security
framework : :

% . %9 Key management
: Keychain : d J

See MSTG for sample implementations:

» http://bit.ly/29Cclwg
See also:

» http://bit.ly/2KVNVKv

» https://apple.co/2KUscTr

http://bit.ly/2qCcIwq
http://bit.ly/2KVNVKv
https://apple.co/2KUscTr

REVERSE ENGINEERING 32

HOW CAN WE MAKE SUCH ATTACKS HARDER?

» Jailbreak detection

» Detection of Dynamic Instrumentation (Frida)
» Anti Tampering

» Obfuscation

> ...

Client Side Security Controls are always a cat and mouse game!

What does Jailbreak Detection mean?
File-based Checks
Checking File Permissions
Checking Protocol Handlers (cydia://)

Calling System APIs

See also:

http://bit.ly/33oEvgR

REVERSE ENGINEERING

34

DYNAMIC BINARY INSTRUMENTATION DETECTION (FRIDA)

How can Frida be detected?

» Checking the App Signature
» Checking For Open TCP Ports
» Scanning Process Memory

> ...

See also: bit.ly/2MtkXJx

Frida.. ‘ahlo

https://bit.ly/2MfkXJx

REVERSE ENGINEERING 35

DYNAMIC BINARY INSTRUMENTATION DETECTION (FRIDA)

Where there's a detection, there is a bypass.

» Detection: https://github.com/securing/
|OSSecuritySuite/blob/master/
|OSSecuritySuite/JailbreakChecker.swift

» Bypass: https://github.com/as0ler/frida-
scripts/blob/master/hooks/
_jailbreak_detection.disabled

Frida.. ‘ahlo

And all in GitHub :)

https://github.com/securing/IOSSecuritySuite/blob/master/IOSSecuritySuite/JailbreakChecker.swift
https://github.com/securing/IOSSecuritySuite/blob/master/IOSSecuritySuite/JailbreakChecker.swift
https://github.com/securing/IOSSecuritySuite/blob/master/IOSSecuritySuite/JailbreakChecker.swift
https://github.com/as0ler/frida-scripts/blob/master/hooks/_jailbreak_detection.disabled
https://github.com/as0ler/frida-scripts/blob/master/hooks/_jailbreak_detection.disabled
https://github.com/as0ler/frida-scripts/blob/master/hooks/_jailbreak_detection.disabled

REVERSE ENGINEERING 36

DETECTION BYPASS THROUGH BINARY PATCHING

» Patch the executable binary file (disassemble or just edit the raw file)

» The bypass might be as easy as making true (0x0) to false (0Ox1) or replacing some logic with a NOP!

» Repackage and re-run the app

0000000100007 70cC movz x25, #0x12 ; CODE XREF=sub_10000/69c+68, sub_10000/69c+96
00000001000077160 movk x25, #0xdoeo, 1lsl #48

0000000100007714 mov X0, x22

0000000100007718 orr wl, wzr, #0x40

000000010000771cC orr w2, wzr, #0x7

0000000100007720 bl imp___ stubs__swift_allocObject ; swift_allocObject
0000000100007724 mov x23, x0

0000000100007728 nop

000000010000772C ldr qo, =0x1

0000000100007730 str 0f, [x0, #0x10]

P000000100007734 tbz w24, 0x0,

0000000100007738 nop

000000010000773C ldr x8, # _$sSSN_100010010 ; _SSSSN

0000000100007740 str x8, [x23, #0x38]

0000000100007744 add x8, x25, #0xb

0000000100007748 adr x9, #0x10000d0co s "This device is not jailbroken"
000000010000774cC nop

0000000100007750 sub X9, x9, #0x20

0000000100007754 orr x9, x9, #0x8000000000000000

REVERSE ENGINEERING

37

DETECTION BYPASS THROUGH DYNAMIC BINARY INSTRUMENTATION

» Inject code to the running app

» Reverse engineering can help finding out which code to inject

» The bypass might be as easy as forcing a function to return true or false!

setTimeout(function(){
Java.perform{ function (){
console.log("[*] Script loaded")

var MainActivity = Java.use("org.owasp.mstg.antifrida.MainActivity")

MainActivity.checkMemory.overload().implementation = function() {
console.log("[*] checkMemory function invoked")
return false

}

MainActivity.PortScanFrida.overload(' java.lang.String').implementation = function() {
console.log("[*] PortScanFrida function invoked")
return false

}

MainActivity.getSignature.overload().implementation = function() §
console.log("[*] getSignature function invoked")
return "99sL2NrjIHWOtNn7nBqgQ3Qwvlyc="

) |
|9
| 3F

REVERSE ENGINEERING 38

FRIDA - MODES OF OPERATION

Injected into a process by running the Frida server on the device
» Working on only jailbroken devices

» Frida handles the injection

Embedded as shared library (frida-gadget.so) into the mobile app

Target process
(org.training.app)

» Working on non-jailbroken devices

» Repackaging and resigning required

REVERSE ENGINEERING 39

200 1. sven@Trainings-MacBook-Pro-2: ~/Desktop/tmp (zsh)

FRI D A I et s = o)
DETECTION =
BYPASS THROUGH

DYNAMIC BINARY
INSTRUMENTATION

Inject and Attach

Att km S ingtel MSTG Vysor
nu Kotlin App

REVERSE ENGINEERING 40

LN N 1. sven@Trainings-MacBook-Pro-2: ~/Desktop/tmp (zsh)

< ~[Desktop/tmp (zsh) 1 : frida (Python) 32 < ..Frida_Scripts (zs... #3 < ..r/Android/Lab (z... ®4 1
-+ tmp |
PERIKE | @ > LY e 7}
DETECTION AnFrida
BYPASS THRUUGH CHECK FRIDA IN MEMORY Fridadetected in Memon!

CHECK FRIDA SERVER Fritiaserver detecten!

DYNAMIC BINARY SRR —
INSTRUMENTATION

Reverse Engineer

REVERSE ENGINEERING 41

. ~/Desktop/tmp (zsh) #1 X Frida_Scripts (zsh) 3£2 < ..Frida_Scripts (zsh) 3 < ..r/Android/Lab (zsh) 4

FRIDA + Frida Scripts o1t (raster) # | - ~ oo T
DETECTION .
BYPASS THROUGH .
DYNAMIC BINARY s S—
INSTRUMENTATION

Script and Bypass

REVERSE ENGINEERING 42

WHAT ABOUT LAYERING CLIENT SIDE CONTROLS?

» Checking if app was repackaged (Objection/Frida-Gadget)
» Checking if a debugger is used
» Checking if Reverse Engineering tools are used (Frida)
» Checking if device is jailbroken

» Usage of Obfuscation

» etc.

Makes the effort more time consuming and can be used as part of a defence in depth strategy by
raising the bar and putting obstacles in the attackers way.

Remember: Reverse Engineering is still possible and will always be a cat and mouse game!

Impede Dynamic Analysis and Tampering Device Binding

he app implemants a ‘'device binding’ functicnality using a device
The app detects, and responds to, the ingerprint derived from multiple properties unique o the device.

jailbroken device either by alerting the

MSTG-RESILIENCE-1

The app prevents debugging and/or de
MSTG-RESILIENCE-2 debugger being attached. All available ¢
covered.

\ll exccutable files and libraries oelonging to the app are either

MSTG-RESILIENCE-3 The app detects, and responds to, tam ' . :ncrypted on the file leve! and/or impertant code and data

critical data within its own sandbox. segments insice the executables are encrypted or packed. Trivial
itatic analysis does not ravezl important code or data

The app detects, and responds to, the p
MSTG-RESILIENCE-4

engineering tools and frameworks on t the gozl o7 obfuscation is to protect sensitive computations, an

bfuscation scheme is used that is both appropriate for the

y ¢
MSTG-RESILIENCE-5 The app detects, and responds to, beinq — // varticular task and robust against manual and automated de-
. S bfuscation methods, considering currently published research. The
The app detects, and responds to, tamy R —— \‘ ffectiveness of the obfuscation scheme must be verified through

MSTG-RESILIENCE-6
anual testing. Note that hardware-based isclaticn features are

own memaory space.
0 preferred over obfuscation whenever pessible.

The app implements multiple mechanis , p :
MSTG-RESILIENCE-7 (8.1 to 8.6). Note that resiliency scales ln T“ E“ lnnx

the originality of the mechanisms used

The detection mechanisms trigger resp AT IT T“E"SE[“SI
MSTG-RESILIENCE-8

: : brofio.
including delayed and stealthy respons i As a defense in depth, rext to having solid hardening of the

S . . L. 8.13 MSTG-RESILIENCE-13 communicaiing parties, applicaticn level pavload encryption can be
Obfuscation is applied to programmatic defenses, which in turn

MSTG-RESILIENCE-9 _ , _ . applied to further impede eavesdrooping.
impede de-obfuscation via dynamic analysis.

http://bit.ly/359PpZh

The MASVS defines mobile apps security requirements

The MSTG outlines those requirements into technical
test cases for Android and iOS ee es ese

Make a Threat Model of your app

Get the basics right first (MASVS Level 1)

Main Security belongs ALWAYS in the server. ..,E ,E::'.::E:.:'.. 5

NEVER rely on only.
Download slide deck

Reverse Engineering Controls NEVER go alone, here:
layer them as a defence-in-depth strategy

The Reverse Engineer will always win!

http://bit.ly/2YkjQuA
https://github.com/securing/IOSSecuritySuite

Thank you!

sven.schleier@owasp.org Carlos.Holguera@owasp.org

Ed @bsd_daemon El @grepharder

mailto:sven.schleier@owasp.org
mailto:Carlos.Holguera@owasp.org

