
(YOU DON’T HAVE TO LEARN IT THE HARD WAY!)
SVEN SCHLEIER AND CARLOS HOGUERA
OWASP STAMMTISCH HAMBURG JAN 2021

BUILDING SECURE MOBILE APPS

Hi everyone, my name is Sven!

$ /USR/BIN/WHOAMI

▸ Previous roles: Unix Admin, Penetration Tester, Security Architect for Web
and Mobile Apps during SDLC

▸ Now Security Architect in ☀ Singapore

▸ Project leader together with Carlos Holguera of:

▸ OWASP Mobile Security Testing Guide (MSTG) and

▸ OWASP Mobile AppSec Verification Standard (MASVS)

▸ Blogging on http://bsddaemonorg.wordpress.com/

2

http://bsddaemonorg.wordpress.com/

Hola, my name is Carlos!

$ /USR/BIN/WHOAMI

▸ Security Engineer & Technical Lead in Berlin:

▸ Mobile & Automotive Security Testing

▸ Security Testing Automation

▸ Project leader together with Sven Schleier of:

▸ OWASP Mobile Security Testing Guide (MSTG) and

▸ OWASP Mobile AppSec Verification Standard (MASVS)

3

AGENDA

OWASP MOBILE SECURITY TESTING GUIDE (MSTG)

DEMOS

OWASP MOBILE APPSEC VERIFICATION STANDARD (MASVS)

4

QUIZ TIME!

LET ME ASK YOU SOME QUESTIONS FIRST!

5

SECURE APPS? 6

FROM THE STANDARD TO THE GUIDE

MOBILE APPSEC
VERIFICATION

STANDARD (MASVS)

https://github.com/OWASP/
owasp-masvs/releases

https://github.com/OWASP/
owasp-mstg/

MOBILE SECURITY
TESTING GUIDE

(MSTG)

https://github.com/OWASP/owasp-
mstg/tree/master/Checklists

MOBILE APPSEC
CHECKLIST

7

https://github.com/OWASP/owasp-masvs/releases
https://github.com/OWASP/owasp-masvs/releases
https://github.com/OWASP/owasp-mstg/
https://github.com/OWASP/owasp-mstg/
https://github.com/OWASP/owasp-mstg/tree/master/Checklists
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

OWASP MOBILE SECURITY TESTING GUIDE (MSTG)

HANDS-ON

OWASP MOBILE APPSEC VERIFICATION STANDARD (MASVS)

8

MOBILE APPSEC VERIFICATION STANDARD (MASVS)

THE MASVS IS A STANDARD THAT DEFINES THE
SECURITY REQUIREMENTS APPLICABLE FOR
MOBILE APPS AND IS OS AGNOSTIC.

Translations available:

▸ Chinese (Traditional and Simplified)

▸ Farsi (Persian)

▸ French

▸ German

▸ Hindi

▸ Japanese

▸ Korean

▸ Portugese (inca. Brazilian Portugese)

▸ Russian

▸ Spanish
https://github.com/OWASP/owasp-masvs#getting-the-masvs

9

https://github.com/OWASP/owasp-masvs#getting-the-masvs

10

V5: NETWORK COMMUNICATION REQUIREMENTS

MOBILE APPSEC VERIFICATION STANDARD (MASVS)

 https://github.com/OWASP/owasp-masvs/blob/master/Document/0x10-V5-Network_communication_requirements.md

https://github.com/OWASP/owasp-masvs/blob/master/Document/0x10-V5-Network_communication_requirements.md
https://github.com/OWASP/owasp-masvs/blob/master/Document/0x10-V5-Network_communication_requirements.md

MOBILE APPSEC VERIFICATION STANDARD (MASVS)

KEEPING THINGS FLEXIBLE: REQUIREMENT “LEVELS”

+ e.g. Banking Apps
+ e.g. Game Apps

e.g. Health Apps
All mobile appsL1

L2

R

R

L1

L2

https://github.com/OWASP/owasp-masvs/blob/master/Document/0x03-Using_the_MASVS.md#verification-levels-in-detail

11

https://github.com/OWASP/owasp-masvs/blob/master/Document/0x03-Using_the_MASVS.md#verification-levels-in-detail

MOBILE APPSEC VERIFICATION STANDARD (MASVS)

HOW TO USE THE MASVS?
▸ The levels and it’s requirements are a baseline that need to be tailored to your needs.

▸ Don’t blindly follow the requirements!

▸ Requirements might be missing (e.g. regulations in your country/industry)

▸ Requirements might not be applicable (or you may want to accept the risk)

▸ Usage ensures consistency of mobile app security when developing / testing an app

▸ Can be part of your threat model to select the requirements that address your gaps!

12

https://www.owasp.org/index.php/Main_Page

MOBILE APPSEC VERIFICATION STANDARD (MASVS)

WHERE CAN I GET IT?

13

▸ Download it

▸ Read it

▸ Use it

▸ Give Feedback and create an issue!

▸ Github - http://bit.ly/2uMFDiY

▸ Gitbook - http://bit.ly/30kZPnW

▸ Releases - http://bit.ly/2NqspPc

https://www.owasp.org/index.php/Main_Page
http://bit.ly/2uMFDiY
http://bit.ly/30kZPnW
http://bit.ly/2NqspPc

MOBILE APPSEC VERIFICATION STANDARD (MASVS)

14

▸ A new release (Version 1.3) is in the
making and will be published soon!

🥳 🎉 🎊

https://www.owasp.org/index.php/Main_Page

OWASP MOBILE SECURITY TESTING GUIDE (MSTG)

HANDS-ON

OWASP MOBILE APPSEC VERIFICATION STANDARD (MASVS)

15

MOBILE SECURITY TESTING GUIDE (MSTG)

THE MSTG IS A COMPREHENSIVE MANUAL FOR MOBILE APP
SECURITY TESTING AND REVERSE ENGINEERING.
IT DESCRIBES TECHNICAL PROCESSES FOR VERIFYING THE
CONTROLS LISTED IN THE MASVS.

https://github.com/OWASP/owasp-mstg/#reading-the-mobile-security-testing-guide

16

https://github.com/OWASP/owasp-mstg/#reading-the-mobile-security-testing-guide

MOBILE SECURITY TESTING GUIDE (MSTG)

STRUCTURE OF A TEST CASE IN THE MSTG

Overview Static Analysis (here you will
also find the best practice)

Dynamic Analysis

Example: Testing iOS WebViews - http://bit.ly/3cjH4sX

17

http://bit.ly/3cjH4sX

MOBILE SECURITY TESTING GUIDE (MSTG) 18

EXAMPLE: MSTG-PLATFORM-5

MOBILE SECURITY TESTING GUIDE (MSTG) 19

▸ Github - http://bit.ly/381ZRn9

▸ Gitbook - http://bit.ly/36Qr2Rz

▸ Releases - http://bit.ly/2Rdef57

WHERE CAN I GET IT?

▸ Download it

▸ Read it

▸ Use it

▸ Give Feedback and create an issue!

http://bit.ly/381ZRn9
http://bit.ly/36Qr2Rz
http://bit.ly/2Rdef57

OWASP MOBILE SECURITY TESTING GUIDE (MSTG)

HANDS-ON

OWASP MOBILE APPSEC VERIFICATION STANDARD (MASVS)

20

TESTING IOS APPS

 HOW DOES A PENETRATION TESTER EXECUTE A TEST FOR AN IOS APP?
Jailbroken Device
▸ Cydia App Store

▸ Full Root Access

‣ Frida iOS: https://www.frida.re/docs/ios/

‣ iOS Basic Security Testing: https://bit.ly/2lHdGoj

‣ iOS Dynamic Testing on non jailbroken device: https://bit.ly/2lG7Kf7

Dynamic instrumentation
‣ Works on (non-)jailbroken devices
‣ Manipulate runtime behaviour of

an app through Frida

21

See also:

https://www.frida.re/docs/ios/
https://bit.ly/2lHdGoj
https://bit.ly/2lG7Kf7

‣ https://github.com/sensepost/objection

‣ Python based

‣ Can be installed and upgraded by using pip3

‣ For more detailed update and installation instructions, please refer to the wiki page:

https://github.com/sensepost/objection/wiki/Installation

TESTING IOS APPS

WAYS TO ANALYSE LOCAL STORAGE - OBJECTION

https://github.com/sensepost/objection
https://github.com/sensepost/objection/wiki/Installation

DETECTING SENSITIVE INFORMATION

How to analyse
local storage of
an iOS App
(Penetration
Tester)

23

DETECTING SENSITIVE INFORMATION

WHAT ABOUT IOS DEVS? THEY DON’T USUALLY HAVE A JAILBROKEN PHONE AND FRIDA
DOESN’T SEEM TO FIT FOR THEM. THERE SHOULD BE A MORE EASY WAY, RIGHT?
Use the tools you already have: Xcode
and iOS Simulator

▸ You have full access to the file
system of the iOS Simulator

24

DETECTING SENSITIVE INFORMATION

How to
analyse local
storage of an
iOS App
(Developer
Perspective)

25

DETECTING SENSITIVE INFORMATION

WHAT ABOUT IOS DEVS? THEY DON’T USUALLY HAVE A JAILBROKEN PHONE AND FRIDA DOESN’T
SEEM TO FIT FOR THEM. THERE SHOULD BE A MORE EASY WAY, RIGHT?
Every app and simulator gets a random 128-bit UUID (Universal Unique Identifier) assigned during installation for
its directory names. When using the iOS Simulator the path is:

 ~/Library/Developer/CoreSimulator/Devices/<Device-UUID>/data/Containers/Data/Application/<App-UUID>

A very handy way to open the data directory of our app running in the current simulator in Finder is the following:

The bundle name would need to be explicitly specified, which is info.s7ven.ios.data in this case.

See also:
https://mobile-security.gitbook.io/mobile-security-testing-guide/ios-testing-guide/0x06d-testing-data-storage#dynamic-analysis-with-xcode-and-ios-simulator

$ open `xcrun simctl get_app_container booted info.s7ven.ios.data data` -a Finder

https://mobile-security.gitbook.io/mobile-security-testing-guide/ios-testing-guide/0x06d-testing-data-storage#dynamic-analysis-with-xcode-and-ios-simulator

DETECTING SENSITIVE INFORMATION

HOW TO DO IT RIGHT?
First reflect: Is it really necessary to store sensitive information on the device? If so, use the
following:

Keychain (small bits of data)

▸ The iOS Keychain can be used to securely store short, sensitive bits of data, such as
encryption keys and session tokens. It is implemented as an SQLite database that can
be accessed through the Keychain APIs only.

iOS Data Protection APIs

▸ App developers can leverage the iOS Data Protection APIs to implement fine-grained
access control for user data stored on the device.

27

BIOMETRIC AUTHENTICATION

TOUCH ID / FACE ID
▸ Fingerprint / facial data is stored in the Secure Enclave which is part of the processor of an

iOS device (during calibration).

▸ The provided data (fingerprint / facial data) is sent to the Secure Enclave and compared with
the stored data to authenticate the user.

▸ An iOS app can confirm via the LocalAuthentication (LAContext) helper class to confirm the
devices passphrase, Touch ID or Face ID.

28

BIOMETRIC AUTHENTICATION

BYPASSING TOUCH ID THE EASY WAY…

29

BIOMETRIC AUTHENTICATION

BYPASSING TOUCH ID

30

BIOMETRIC AUTHENTICATION

HOW TO DO IT RIGHT?
▸ 2 different implementations are available:

▸ Local Authentication Framework only (LAContext)

▸ LAContext together with KeyChain Services

▸ App stores either a secret authentication token or
another piece of secret data identifying the user in
the Keychain.

▸ A valid set of biometrics must be presented before
the key is released from the Secure Enclave to
decrypt the keychain entry itself.

▸ This solution cannot be bypassed (even on
jailbroken devices), as the verification is done within
the Secure Enclave (SE).

See MSTG for sample implementations:

▸ http://bit.ly/2qCcIwq

See also:

▸ http://bit.ly/2KVNVKv

▸ https://apple.co/2KUscTr

31

http://bit.ly/2qCcIwq
http://bit.ly/2KVNVKv
https://apple.co/2KUscTr

REVERSE ENGINEERING

HOW CAN WE MAKE SUCH ATTACKS HARDER?
▸ Jailbreak detection

▸ Detection of Dynamic Instrumentation (Frida)

▸ Anti Tampering

▸ Obfuscation

▸ …

Client Side Security Controls are always a cat and mouse game!

32

REVERSE ENGINEERING

JAILBREAK DETECTION
What does Jailbreak Detection mean?

▸ File-based Checks

▸ Checking File Permissions

▸ Checking Protocol Handlers (cydia://)

▸ Calling System APIs

▸ …

See also: http://bit.ly/33oEvgR

33

http://bit.ly/33oEvgR

REVERSE ENGINEERING

DYNAMIC BINARY INSTRUMENTATION DETECTION (FRIDA)
How can Frida be detected?

▸ Checking the App Signature

▸ Checking For Open TCP Ports

▸ Scanning Process Memory

▸ …

See also: bit.ly/2MfkXJx

34

Frida KahloX

FRIDA IS THERE!

https://bit.ly/2MfkXJx

REVERSE ENGINEERING

Where there’s a detection, there is a bypass.

▸ Detection: https://github.com/securing/
IOSSecuritySuite/blob/master/
IOSSecuritySuite/JailbreakChecker.swift

▸ Bypass: https://github.com/as0ler/frida-
scripts/blob/master/hooks/
_jailbreak_detection.disabled

And all in GitHub :)

35

DYNAMIC BINARY INSTRUMENTATION DETECTION (FRIDA)

Frida KahloX

FRIDA IS THERE! X

https://github.com/securing/IOSSecuritySuite/blob/master/IOSSecuritySuite/JailbreakChecker.swift
https://github.com/securing/IOSSecuritySuite/blob/master/IOSSecuritySuite/JailbreakChecker.swift
https://github.com/securing/IOSSecuritySuite/blob/master/IOSSecuritySuite/JailbreakChecker.swift
https://github.com/as0ler/frida-scripts/blob/master/hooks/_jailbreak_detection.disabled
https://github.com/as0ler/frida-scripts/blob/master/hooks/_jailbreak_detection.disabled
https://github.com/as0ler/frida-scripts/blob/master/hooks/_jailbreak_detection.disabled

REVERSE ENGINEERING

DETECTION BYPASS THROUGH BINARY PATCHING
▸ Patch the executable binary file (disassemble or just edit the raw file)

▸ The bypass might be as easy as making true (0x0) to false (0x1) or replacing some logic with a NOP!

▸ Repackage and re-run the app

36

REVERSE ENGINEERING

DETECTION BYPASS THROUGH DYNAMIC BINARY INSTRUMENTATION
▸ Inject code to the running app

▸ Reverse engineering can help finding out which code to inject

37

▸ The bypass might be as easy as forcing a function to return true or false!

REVERSE ENGINEERING 38

Injected into a process by running the Frida server on the device

▸ Working on only jailbroken devices

▸ Frida handles the injection

FRIDA - MODES OF OPERATION

Embedded as shared library (frida-gadget.so) into the mobile app

▸ Working on non-jailbroken devices

▸ Repackaging and resigning required

Frida-Server

Frida-Core

Target process
(org.training.app)

Frida-Agent

Frida tool

Target process
(org.training.app)

Frida GadgetFrida tool

REVERSE ENGINEERING

FRIDA
DETECTION
BYPASS THROUGH
DYNAMIC BINARY
INSTRUMENTATION

39

Inject and Attach

REVERSE ENGINEERING

FRIDA
DETECTION
BYPASS THROUGH
DYNAMIC BINARY
INSTRUMENTATION

40

Reverse Engineer

REVERSE ENGINEERING

FRIDA
DETECTION
BYPASS THROUGH
DYNAMIC BINARY
INSTRUMENTATION

41

Script and Bypass

REVERSE ENGINEERING

WHAT ABOUT LAYERING CLIENT SIDE CONTROLS?
▸ Checking if app was repackaged (Objection/Frida-Gadget)

▸ Checking if a debugger is used

▸ Checking if Reverse Engineering tools are used (Frida)

▸ Checking if device is jailbroken

▸ Usage of Obfuscation

▸ etc.

Makes the effort more time consuming and can be used as part of a defence in depth strategy by
raising the bar and putting obstacles in the attackers way.

Remember: Reverse Engineering is still possible and will always be a cat and mouse game!

42

REVERSE ENGINEERING

V8: RESILIENCE REQUIREMENTS

http://bit.ly/359PpZh

43

http://bit.ly/359PpZh

KEY TAKEAWAYS
▸ The MASVS defines mobile apps security requirements

Download slide deck
here:

http://bit.ly/2YkjQuA

▸ The MSTG outlines those requirements into technical
test cases for Android and iOS

▸ Make a Threat Model of your app

▸ Get the basics right first (MASVS Level 1)

▸ Main Security belongs ALWAYS in the server.
NEVER rely on client side security controls only.

▸ Reverse Engineering Controls NEVER go alone,
layer them as a defence-in-depth strategy

▸ The Reverse Engineer will always win!

44

http://bit.ly/2YkjQuA
https://github.com/securing/IOSSecuritySuite

sven.schleier@owasp.org

@bsd_daemon

Thank you!

Carlos.Holguera@owasp.org

@grepharder

mailto:sven.schleier@owasp.org
mailto:Carlos.Holguera@owasp.org

