
XS-Leak und XS-Search Angriffe

Lukas Knittel
@kunte_ctf

whoami

• ITS @ Ruhr University Bochum
• Chair for Network and Data Security
• @kunte_ctf

• FluxFingers
• RUB CTF Team
• @fluxfingers

2

Overview

• Basics
• Site, Origin
• Same-Origin Policy (SOP)
• Attacking the SOP

• XS-Leaks and XS-Search
• XS-Leak Attacks
• XS-Search Attacks
• XSinator.com

• Attack techniques
• Attack examples

• Mitigations

3

URLs

https://prod.example.com:443/blog/?lang=en#head1

Scheme
(Protocol)

Domain

Port Query

Path Fragment

4

Top-level domains

https://prod.example.com:443/blog/?lang=en#head1

eTLD

eTLD+1

Subdomain

https://prod.amazon.co.uk

eTLD

eTLD+1

SubdomainPublic Suffix List

- .com
- .co.uk
- .github.io
- …

5

Site vs Origin

Site
(scheme, eTLD+1) tuple

• https://example.com

Origin
(scheme, port, domain) tuple

• https://www.example.com:443

Problem: host != location.host != location.hostname

https://www.example.com:443/login/

6

Cross-Site vs Same-Site
URL A URL B Cross/Same Reason

https://www.example.com:443 https://login.example.com:443

https://www.example.com:443 https://www.evil.com:443

http://project1.github.io:80 http://project2.github.io:80

https://www.example.com:443 https://www.example.com:80

https://github.io:443 https://project1.github.io:443

https://github.io:443 https://github.io:443

https://www.example.com:443 http://example.com:80

Given that: github.io, io, and com are public suffixes

[1] sometimes called schemeless same-site

Same-Site

Cross-Site

Cross-Site

Same-Site

Cross-Site

Same-Site

Cross-Site1

subdomains do not matter

different eTLD+1

different eTLD+1

ports are ignored

different eTLD+1

exact match

different scheme

7

Same-Origin Policy (SOP)

B

A

Origin A

• Browser security mechanism
• restrict interaction between different

Origins

SOP limits data access only. Embedding
resources like images, CSS and scripts is
not restricted.

Origin A can not read
data from Origin B

Origin A can read data
from Origin A

8

A

Cross-Origin vs Same-Origin
URL A URL B Cross/Same Reason

https://www.example.com:443 https://login.example.com:443

http://www.example.com:443 https://www.example.com:443

http://nds.rub.de/main.php http://nds.rub.de/index.php

https://www.example.com:443 https://www.example.com:80

https://www.example.com:443 https://www.evil.com:443

https://www.example.com:443 https://example.com:443

https://example.com:443 https://example.com

Remember: (scheme, port, domain) = Origin

Cross-Origin

Cross-Origin

Cross-Origin

Cross-Origin

Cross-Origin

Same-Origin

Same-Origin

subdomain does not match

schema does not match

path does not matter

port does not match

different domain

subdomain does not match

implicit port matches

9

Attacking the SOP

• Cross-Site Scripting (XSS)
• Execute JavaScript in a cross-origin context

• CSS-Injection
• Execute CSS in a cross-origin context

• Misconfigured CORS Policy
• Abuse overly permissive CORS Policy
• E.g., Access-Control-Allow-Origin: *

• DNS Rebinding
• Switch Domain Names (TOCTOU)

• Cross-Site Request Forgery (CSRF)
• Cause state change by just sending a request
• this is allowed by the SOP

attacker.com target.com

attacker.com target.com

?newmail=…

10

Cross-Origin Window Handle Access

• Window Handles (Popups, Iframes)
iframe.contentWindow window.parent window.open window.opener

• SOP limits access to window methods/attributes

window.blur window.close window.focus window.postMessage

window.closed window.frames window.length window.location

window.opener window.parent window.self window.top

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#window 11

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

Example

• Open Popup
• target=_blank

12

Example

• Open Popup
• target=_blank

13

Example

• Open Popup
• target=_blank

• Accessible Attributes

14

Example

• Open Popup
• target=_blank

• Accessible Attributes
• attacker.com can read

the number of Iframes
on google.com

15

Example

• Open Popup
• target=_blank

• Accessible Attributes
• attacker.com can read

the number of Iframes
on google.com

• Logout and test again

16

Example

• Open Popup
• target=_blank

• Accessible Attributes
• attacker.com can read

the number of Iframes
on google.com

• Logout and test again

=> attacker.com can detect
if a user is currently logged
into Google (0 vs 1 Iframe)

17

Attack Flow XS-Leak
1. Victim visits
attacker.com

attacker.com target.com

2. Use Inclusion
Method

State-
Dependent
Resource

3. Use Leak
Technique

4. Determine
User State

Previous Example:
• Inclusion Method

• window.open()

• Detectable Difference
• 1 Iframe or 0 Iframes

• Leak Technique
• frames.length

• User State
• Login Status

18

Cross-Site Leak Attack (XS-Leak)

• Browser side-channel attack
• Bypass the Same-Origin Policy (SOP)
⇒ use detectable differences to determine the victim's User State

A client-side bug/technique that allows an attacker to collect side-
channel information from a cross-origin HTTP resource by observing
how the browser reacts.

Idea

19

User States

• Login Status
• Is the victim logged into a specific site?

• Account Type
• Is the vicitim an admin or regular user? (premium vs. guest)

• Account Owner
• Is the vicitim the owner of a specific account?

• Group Affilication
• Is the vicitim member of a specific group or channel?

• Session Status
• Has the vicitim visited a specific site before?

20

Inclusion Methods

• HTML Elements
• <script>, , <link>

• Iframe, Object and Embed
• <iframe>, <object>, <embed>

• Pop-ups
• window.open()

• JavaScript Requests
• Fetch API

21

Detectable Differences

• API Usage
• Websockets
• Payment API

• Status Code
• Errors (4XX & 5XX)
• Authorization (401)

• Redirects
• Redirects
• JS Redirects
• Leak Redirect Target

• Page Content
• Iframe Count
• Page Resource
• ID Attributes
• Image Size

• HTTP Header
• X-Frame-Options
• Content-Type
• Content-Disposition
• CSP Directives

22

Cross-Site Search Attack (XS-Search)

“Is there an e-mail which contains the word secret?” – email service
“Are there plans for the weekend?” – calendar service

• abuses Query-Based Search Systems
• ?search=AAAA ?search=AAAB ?search=AAAC

⇒ The “answer” is obtained with XS-Leaks

The attacker repeatedly “asks” questions on behalf of the victim to a
web endpoint.

Idea

23

XS-Search Attack Flow

1. Victim visits
attacker.com

attacker.com target.com

2. Issue
Challenges

State-
Dependent
Resource

3. Collect and
Analyse

4. Leak User
Information

attacker.com target.com

State-
Dependent
Resource

Challenge 1

Challenge n

24

The Paper

25

CCS21

Formal Model
for XS-Leaks

XSinator.com a
Browser Test Suite

XS-Leak Ingredients:
detectable difference, inclusion

methods, leak technique

XSinator.com

26

Automatically tests 34 XS-Leaks in the
browser

• Testing site acts as the attacker site
• https://xsinator.com

• Vulnerable web application simulates
the state-dependent resource
• https://xsinator.xyz

Demo

27

https://XSinator.com

https://xsinator.com/

WebSocket Detection
API Usage

• The WebSocket API makes it possible to open a two-way interactive
communication session between the user's browser and a server.

28

WebSocket Detection
API Usage

• Firefox and Chrome enforces a global limit to the number of
WebSockets
• network.websocket.max-connections (default:200)

Firefox Source: netwerk/protocol/websocket/WebSocketChannel.cpp

Attack Plan:
1. exhaust limit
2. close n WebSockets
3. open target page
4. try opening n WebSockets
5. count the number of error

29

Event Handler Error Leak
Status Code Detection

Response A
sc = (2XX or 3XX)

=> onload Event

Response B
sc = (4XX or 5XX)

=> onerror Event

30

Event Handler Error Leak
Status Code Detection

Chrome for <link rel=stylesheet>

31

Event Handler Error Leak
Status Code Detection

• HTML only variant
• Chrome + Firefox

• The content of the <object> tag is only rendered if the resource
specified in the data attribute fails to load.

https://html.spec.whatwg.org/multipage/iframe-embed-object.html#the-object-element 32

https://html.spec.whatwg.org/multipage/iframe-embed-object.html

Cache Leak
Page Content

The image is only loaded
when a mail is found.

33

Cache Leak Attack Flow
Page Content

State A

1. Delete Resource from Cache

2. Load Target Website

3. Probe Cache for Resource

⇒State A ⇒ Victim has mail with keyword.

secret

State A

34

Performance API XFO Leaks
HTTP Header Detection

The Performance API
provides access to
performance-related
information for the current
page.

• performance.getEntries()
• Timing Leaks
• Restricted access for

cross-origin resources

35

https://developer.mozilla.org/de/docs/Web/API/Performance

Performance API XFO Leak
HTTP Header Detection

• All resources should create resource entries.
• However:

Iframe requests will not be logged if they are blocked with X-Frame-Options.

ÞDetect X-Frame-Options: {Deny, SameOrigin}

State A
no XFO

performance.getEntriesByType('resource').length === 1

State B
XFO Deny

performance.getEntriesByType('resource').length === 0

36

XS-Leak Mitigations

• X-Frame-Options or frame-ancestors (CSP)

• Cross-Origin Opener Policy (COOP)

• Cross-Origin Resource Policy (CORP)
• Cross-Origin Read Blocking (CORB)

• Fetch Metadata

Browser Security Features
• No differences between User States

• User Interaction

• Rate Limiting
• Unique URLs per Session

Application-Specific Mitigations

SameSite Cookies
attacker.com target.com

SameSite

37

Fixing Leak Techniques
• Most Leaks are Browser Bugs

• Vendors are fixing them

• Check XSinator.com

Security Header

• X-Frame-Options
• Restrict framing
• <iframe>, <object>, <embed>
• Can be detected with XS-Leaks

• Cross-Origin Resource Policy (CORP)
• Restrict embedding of resources
• same-origin or same-site
• Blocks

on attacker.com if set.

• Cross-Origin Opener Policy (COOP)
• Restrict access to window.opener

• Fetch Metadata
• Request Header

• Sec-Fetch-Dest: image
• Sec-Fetch-Site: cross-site

• requires server logic

38Read: https://scotthelme.co.uk/coop-and-coep/

https://scotthelme.co.uk/coop-and-coep/

SameSite Cookies

• Cookie flag like HTTPOnly or secure
• best security mechanism against XS-Leaks
• force browsers to only include cookies in same-site requests
• 3 modes: None, Lax, Strict

Read: https://web.dev/samesite-cookies-explained/ 39

attacker.com target.com

SameSite

https://web.dev/samesite-cookies-explained/

40

Thank you for listening!
Any Questions?

@kunte_ctf

XSinator.com

Challenges?! https://owasp.ikseses.xyz/

https://owasp.ikseses.xyz/

Formal XS-Leak Description

• 𝑠𝑑𝑟 ∈ 𝑆𝐷𝑅 is a state-dependent resource.

• 𝑖 ∈ 𝐼 is an inclusion method to request a cross-origin resource.

• 𝑡 ∈ 𝑇 is a leak technique which can be used to observe state-dependent
resources cross-origin.

XSinator.com: From a Formal Model to the Automatic
Evaluation of Cross-Site Leaks in Web Browsers

42

A Cross-Site Leak is a function 𝑥𝑠𝑙() that outputs a bit 𝑏ʹ, that
is 𝑏ʹ = 𝑥𝑠𝑙(𝑠𝑑𝑟, 𝑖, 𝑡)

Definition 2 – Cross-Site Leak

If there exists an inclusion method 𝑖 and a leak technique 𝑡 such that 𝑥𝑠𝑙((𝑢𝑟𝑙, (𝑠𝑏, 𝑑𝑏)), 𝑖, 𝑡) = 𝑏 then
the difference 𝑑 is detectable.

Formal XS-Leak Description

• 𝑢𝑟𝑙 is a URL resource on the target web application.

• 𝑆 = {𝑠0, 𝑠1} is a set of two different states of the target web application.

• 𝐷 = {𝑑0, 𝑑1} is a set that represents the difference of the web application’s
behavior that depends on 𝑠0 and 𝑠1.

XSinator.com: From a Formal Model to the Automatic
Evaluation of Cross-Site Leaks in Web Browsers

43

A state-dependent resource 𝑠𝑑𝑟 is a 2-tuple (𝑢𝑟𝑙, (𝑠, 𝑑)),
where (𝑠, 𝑑) ∈ {(𝑠0, 𝑑0), (𝑠1, 𝑑1)}.

Definition 1 – State-dependent resource

Limitations XSinator.com

• Browser Compatibility
• as many browsers as possible
• mobile browsers

• Could not implement all known leaks
• some interfere with each other or are too unstable

• Excluded Leaks
• misconfiguration (e.g., CORS, postMessage, …)
• webapp specific (e.g., WAF)
• timing leaks

44

