Rust: Eine moderne
Alternative zu C und C++

Damian Poddebniak
OWASP Hamburg Stammtisch, 06.07.2023

e,
#rust-hamburg:matrix.org §--

Email-Analysis

Aa afollowers ¢ https.//ng

() Overview [J] Repositories 3 [

Popular repositories

command-injection-tester

@®Python 11 Y1

command-injection-scanner

®Gco o %2

README.md

Build & Test [passing Audit [passing | coverage PEES% f docs | passing

imap-codec

This library provides parsing, serialization, and general support for IMAP4rev1 implementations. It is based on
imap-types and aims to become a rock-solid building block for IMAP client and server implementations in
Rust. The complete formal syntax of IMAP4rev1 and several IMAP extensions are implemented. Please see the
documentation for more information.

Features

« Correctness and misuse-resistance are enforced on the type level. It's not possible to construct a message
that violates the IMAP specification.

« Messages automatically use the most efficient representation. For example, atoms are preferred over
quoted strings, and quoted strings are preferred over literals. It's equally easy to manually choose a
representation.

« Parsing works in streaming mode. Incomplete IS returned when there is insufficient data to make a final
decision. No message will be truncated.

« Parsing is zero-copy by default. Allocation is avoided during parsing, but all messages can explicitly be
converted into more flexible owned variants.

« Fuzzing and property-based tests exercise the library. The library is fuzz-tested never to produce a
message it can't parse itself.

Agenda

Teil 1 - Einleitung / Motivation

Teil 2 - Live Coding
 Implementierung einer HTTP Library

* Tooling
- Tests
- Dokumentation
- Debugging

* Features
- Ownership & Borrowing
- Algebraische Datentypen

Eckdaten

Entstanden bei Mozilla Research

Stabil

Kompiliert (LLVM)
* High-performance
* Platform support

Features
 Ownership & Borrowing (Speichersicherheit)
» Algebraische Datentypen

Community-Projekt

target notes

anr..--ln{.‘.-l_nnl.rnnu T A i e ADKAEA | irmow fearnal A 1 mlike 2 1720 1

’ How Rust is built by its community

RFC process

Each major decision in Rust starts as a Request for Comments (RFC). Everya
discuss the proposal, to work toward a shared understanding of the tradeo
sometimes arduous, this community deliberation is Rust’s secret sauce for

LEARN MORE

Linux 6.1: Rust to hit mainline kernel
More Rust Code Readied For Linux 6.4

Ney

A Lia

The

Kees
mea
weel

No, 1
othe
not,

Wha
be si
one

Man'
desp
the k
to th
Chrc

11 1T

writ, Rust in the Android platform ke
Aprii
A= in memory-safe Rust
.|
corr Now that's a C change we can back
addre and 4 homas clabum Thu 27 Apr 2023 20:45 UTC
abstr the
Microsoft is rewriting core Windows libraries in the Rust programming language, and the
and more memory-safe code is already reaching developers.
are ¢
David "dwizzle" Weston, director of OS security for Windows, announced the arrival of
Yeti Rustin the operating system's kernel at BlueHat IL 2023 in Tel Aviv, Israel, last month.
stab "vou will actually have Windows booting with Rust in the kernel in probably the next
several weeks or months, which is really cool,” he said. "The basic goal here was to
convert some of these internal C++ data types into their Rust equivalents.”
In ac Microsoft showed interest in Rust several years ago as a way to catch and squash
arel memory safety bugs before the code lands in the hands of users; these kinds of bugs
were at the heart of about 70 percent of the CVE-listed security vulnerabilities patched by
the 1 the Windows maker in its own products since 2006.

34 } H
q WAl
s The Rust Security Advisory Database

Advisories About RustSec gitter Fjoimehat ¥y) = A

RUSTSEC-2019-0026: sodiumoxide: generichash::Digest::eq

always return true

Description

PartialEg implementation for generichash:Digest has compared itself to itself.

Digest:ieq always returns true and Digest::ne always returns false.

Memory Safety (Intuition)

Spatial
« {Stack,Heap}-based buffer overflows
e Qut-of-bounds {read,write}

Temporal

e Using uninitialized memory
* Use-after-free

* Double-free

 NULL-pointer dereference

Memory Safety (Intuition)

Spatial

s {StaelkHeapt-based-butteroverflows --> bounds checking
» Out-ef-bounds—{read;write} --> bounds checking

Temporal

* Usinguninttiahzed-memery --> not allowed
» Use-afterfree --> Ownership

* Bouble-free --> Ownership

 NHL-pointerdereferenee --> Option<T>

Rank
Rank ID Name Score Clziflt Ch:: ge
(CVEs) 2021
1 CWE-787 |Out-of-bounds Write 64.20 62 0
2 CWE-79 ||Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’) 45.97 2 0
| 3 \ CWE-89 |Im|::-r[:|::er MNeutralization of Special Elements used in an SQL Command ('SQL Injection’) | 22.11 | 7 | +3 A
4 CWE-20 ||Improper Input Validation 20.63 20 0
| 5 | CWE-125 |Out-of-bounds Read | 1767 | 1 | -2 ¥
| 6 \ CWE-78 |Im|::-r[:|::er Neutralization of Special Elements used in an OS Command ('OS Command Injection’) | 17.53 | 32 | -1V
| 7 || CWE-416 |Use After Free | 1550 | 28 | o |
| 8 \ CWE-22 |Im|::-r[:|::er Limitation of a Pathname to a Restricted Directory ("Path Traversal’) | 14.08 | 19 | 0
| 9 | CWE-352 |Cross-Site Request Forgery (CSRF) | 1153 | 1 | o©
| 10 | CWE-434 |Unrestricted Upload of File with Dangerous Type | 95 | 6 | O
| 11 | CWE-476 |NULL Pointer Dereference | 715 | 0 || +4 A
12 CWE-502 |Deserialization of Untrusted Data 6.68 7 +1 A
| 13 | CWE-190 |Integer Overflow or Wraparound | 653 | 2 | 1w
| 14 | CWE-287 |Improper Authentication | 635 | 4 | 0O
| 15 | CWE-798 |Use of Hard-coded Credentials | 566 | 0 | +1 A
| 16 | CWE-862 |Missing Authorization | 553 | 1 | +2 A
| 17 ‘ CWE-77 |Im|::-rc:|::er MNeutralization of Special Elements used in a Command ('Command Injection’) | 5.42 | 5 | +8 A
| 18 | CWE-306 |Missing Authentication for Critical Function | 515 | 6 || -7 W
|| 19 H CWE-119 ”Impr{]per Restriction of Operations within the Bounds of a Memory Buffer H 4.85 || 6 || -2 Y|
| 20 ‘ CWE-276 |Inc0rrect Default Permissions | 4.84 | 0 | -1V
21 CWE-918 |Server-Side Request Forgery (SSRF) 4.27 8 +3 A
| 22 CWE-362 |Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition) | 3.57 | 6 | +11 A
| 23 | CWE-400 |Uncontrolled Resource Consumption | 356 | 2 || +4 Al
| 24 ‘ CWE-611 |Im|::-rc:|::er Restriction of XML External Entity Reference | 3.38 | 0 | -1V
| 25 \ CWE-94 |Im|::-r[:|::er Control of Generation of Code ('Code Injection’) | 3.32 | 4 | +3 A

Rank
Rank ID Name Score |§T(EEif Ehf:ge
2022
1 CWE-787 |[Out-of-bounds Write 63.72 70 0
2 CWE-79 [Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') 45.54 4 0
3 CWE-89 [Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’) 34.27 6 0
4 CWE-416 (Use After Free 16.71 44 +3
5 | CWE-78 [Improper Neutralization of Special Elements used in an OS5 Command ('OS Command Injection’) | 15.65 23 | +1
6 CWE-20 [Improper Input Validation 15.50 35 -2
7 CWE-125 |[Cut-of-bounds Read 14.60 2 -2
8 CWE-22 [Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal’) 14.11 16
9 CWE-352 |[Cross-Site Request Forgery (CSRF) 11.73 0
10 | CWE-434 [Unrestricted Upload of File with Dangerous Type 10.41 |
11 CWE-862 [Missing Authorization 6.90 0 +5
12 CWE-476 [NULL Pointer Dereference 6.59 -1
13 CWE-287 (Improper Authentication 6.39 10 +1
14 CWE-190 (Integer Overflow or Wraparound 5.89 4 -1
15 | CWE-502 |Deserialization of Untrusted Data | 5.56 14 | 3
16 CWE-77 [Improper Neutralization of Special Elements used in a Command ('Command Injection’) 4.95 4 +1
17 CWE-119 [Improper Restriction of Operations within the Bounds of a Memory Buffer 4.75 7 +2
18 | CWE-798 |Use of Hard-coded Credentials | 457 2 | -3
19 CWE-218 |(Server-Side Request Forgery (SSRF) 4.56 16 +2
20 CWE-306 [Missing Authentication for Critical Function 3.78 8 -2
21 CWE-362 |[Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition’) 3.53 8 +1
22 CWE-269 (Improper Privilege Management 3.31 5 +7
23 | CWE-94 (Improper Control of Generation of Code ("Code Injection’) | 3.30 6 | +2
24 CWE-863 (Incorrect Authorization 3.16 0 +4 10
25 CWE-276 (Incorrect Default Permissions 3.16 0 -5

Il. Most Loved, Dreaded, and Wanted

Mof:irl mirmel Meansdasd amel WAlambaesd | amsainrasass
=

Most Loved, Dreaded, and Wanted Languages

9 ! Most Loved, Dreaded, and Wanted Languages
{

Lo The Beloved

Loved v
Loved vs. Dreaded Want

Rust
Elixir
Clojure
TypeScript
Julia
Python
Delphi
Go

sqQL

C#
Kotlin

Swift

24.54%

24.77%

26.54%

27.49%

32.66%

34.49%

35.42%

35.75%

36.61%

36.71%

37.12%

Programming, scripting, and markup languages

_ Compare this to the least admired

language: MATLAB. Less than 20% of developers who used this language
want to use it again next year.

87,510 responses

JavaScript

Python

TypeScript
HTML/CSS
SQL

Rust

CH#
Bash/Shell (all shells)

Rust fact vs. fiction: 5 Insights from Google's Rust
journey in 2022

Tuesday, June 27, 202

Rumor 1: Rust takes more than é months to learn - Debunked'!

All survey participants are professional software developers (or a related field), employed at
Google. While some of them had prior Rust experience (about 13%), most of them are coming
from C/C++, Python, Java, Go, or Dart.

Based on our studies, more than 2/3 of respondents are confident in contributing to a Rust
codebase within two months or less when learning Rust. Further, a third of respondents become
as productive using Rust as other languages in two months or less. Within four months, that
number increased to over 50%. Anecdotally, these ramp-up numbers are in line with the time we've
seen for developers to adopt other languages, both inside and outside of Google.

Overall, we've seen no data to indicate that there is any productivity penalty for Rust relative to any
other language these developers previously used at Google. This is supported by the students who
take the Comprehensive Rust 4 class: the questions asked on the second and third day show that
experienced software developers can become comfortable with Rust in a very short time.

13

Alternativen

Uberblick

Sichere C Dialekte
* Cyclone, Deputy, MISRA-C, ...

Sichere C Implementierungen
* MSVC RTC Compiler, Fail-Safe C, Ccured, FORTIFY_SOURCE, ...

Statische Code Analyse
* CodeSonar, Coverity Static Analysis, ...

Testing
 Asan, AFL, libFuzzer, ...

Mitigations
« DEP, Stack Canaries, ASLR, CFlI, ...

SoK: Eternal War in Memory

Laszlo SzekeresT, Mathias Payeri, Tao Wei*i, Dawn Songi
TSrany Brook University
iUniversit}-‘ of California, Berkeley
*Peking University

Abstract—Memory corruption bugs in software written in
low-level languages like C or C++ are one of the oldest problems
in computer security. The lack of safety in these languages
allows attackers to alter the program’s behavior or take full

control over it by hijacking its control flow. This problem has
existed for more than 30 years and a vast number of potential
solutions have been proposed, yet memory corruption attacks
continue to pose a serious threat. Real world exploits show that

all currently deployed protections can be defeated.

This paper sheds light on the primary reasons for this
by describing attacks that succeed on today’s systems. We
systematize the current knowledge about various protection
techniques by setting up a general model for memory corrup-
tion attacks. Using this model we show what policies can stop

try to write safe programs. The memory war effectively
is an arms race between offense and defense. Accord-
ing to the MITRE ranking [1], memory corruption bugs
are considered one of the top three most dangerous soft-
ware errors. Google Chrome, one of the most secure web
browsers written in C++, was exploited four times during
the Pwn20wn/Pwnium hacking contests in 2012,

In the last 30 years a set of defenses has been devel-
oped against memory corruption attacks. Some of them are
deployed in commodity systems and compilers, protecting
applications from different forms of attacks. Stack cook-

ies [2], exception handler validation [3], Data Execution
16

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
A Patch Year

1Ca.. B Memory safet B Not memory safet
Rust, Safe Systems Programming Languages, Secure Development

What if we could eliminate an entire class of vulnerabilities before they ever happened?

17

' ﬁ Download Firefox

'moz://a|
G HACKS

Implicat
Compon

There's a large overlap between memory safety violations and security-related
bugs, so we expected this rewrite to reduce the attack surface in Firefox. In this
post, | will summarize the potential security vulnerabilities that have appeared
in the styling code since Firefox's initial release in 2002. Then I'll look at what
could and could not have been prevented by using Rust.

Over the course of its lifetime, there have been 69 security bugs in Firefox's
style component.

While Rust makes it easier to write better code, it's not foolproof.

138

Rust in the Android platform
April 6, 2021

Posted by Jeff Vander Stoep and Stephen Hines, Android Team

Correctness of code in the Android platform is a top priority for the security, stability,
and quality of each Android release. Memory safety bugs in C and C++ continue to be
the most-difficult-to-address source of incorrectness. We invest a great deal of effort
and resources into detecting, fixing, and mitigating this class of bugs, and these efforts
are effective in preventing a large number of bugs from making it into Android releases.
Yet in spite of these efforts, memory safety bugs continue to be a top contributor of

stability issues,

In addition to ongoing and upcoming efforts to improve detection of memory bugs, we
are ramping up efforts to prevent them in the first place. Memory-safe languages are
the most cost-effective means for preventing memory bugs. In addition to memory-safe
languages like Kotlin and Java, we're excited to announce that the Android Open Source
Project (AOSP) now supports the Rust programming language for developing the 0S

itself.

https://security.googleblog.com/2021/04/rust-in-android-platform.html

19

Memory Safe Languages in Android 13

December 1,

Posted by Jeffre

For more tha
maore than 65
we're now se

vulnerabilitie:

Looking at vL
critical/high ¢
(VRP) and vu
vulnerabilitie:
to 2022 the a
85.

T—

New Native Code

BN

80

60

40

Bl Russt I C I C+t

Me
250

200

150

100

50

Memory unsafe code and Memory safety vulnerabilities

B New memory unsafe code [l Memory safety vulns

100

75
™

e 50
=

25

0

2019 (10) 2020 (11) 2021 (12) 2022 (13)
Year (Android release)

@ Install Learn Playground Tools Governance Community Blog

English (en-Us) =

Rust

Version 1.70.0

A language empowering everyone
to build reliable and efficient software.

Rust: Eine moderne
Alternative zu C und C++

Damian Poddebniak
OWASP Hamburg Stammtisch, 06.07.2023

e,
#rust-hamburg:matrix.org §--

BACKUP

Messaging Layer Security

struct {

ProposalOrRefType type;

select
case

¥

case reference: ProposalRef reference;

(ProposalOrRef.type) {
proposal: Proposal proposal;

} ProposalOrRef;

struct {

ProposalType proposal_type;

select
case
case
case
case

};...

(Proposal.proposal_type) {
add: Add;

update: Update;

remove: Remove;

psk: PreSharedKey;

} Proposal;

Rust Code

enum ProposalOrRef {
Proposal(Proposal),
ProposalRef(ProposalRef),

}

enum Proposal {
Add(Add),
Update(Update),
Remove (Remove),
Psk(Psk),

24

	Modern Programming Languages
	Slide 2
	Agenda
	Was ist Rust?
	Slide 5
	Slide 6
	Memory Safety (Intuition)
	Memory Safety (Intuition) (2)
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Alternativen
	Überblick
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

