
SECURITY ENGINEERING
OR UNPOPULAR APPSEC

Anatoly
Makovetsky
Head of Security
Pepperstone

2023 © Anatoly Makovetsky

Table of contents

1. Why do we do AppSec?
2. What do we do in AppSec?
3. Security Engineering:

a. Where does it stay?
b. What exactly to do?

i. Example 1
ii. Example 2
iii. Example 3

c. How to achieve it?
4. Conclusions
5. Contacts

Why do we do AppSec?

AppSec is a part of the Software Development process
focusing on finding, fixing and preventing vulnerabilities
at the application level.

“Shift left” is a popular approach of including AppSec to the
early stages of the Software Development helping to act
more preventively than detectively and correctively.

It works on overall product quality in the scope of reduction
of material risks related to potential or real misuse of
application functionality and processed/stored data.

What do we do in AppSec?

Secure SDLC stages:

1. Planning & Analysis – Security Risk Assessment
2. Design – Security Architecture Review
3. Development – Consulting
4. Testing – Implementation Assessment
5. Deployment – Vulnerability Management Process

Integration
6. Maintenance – Continuous Vulnerability

Assessment

What do we do in AppSec?

“Security engineering is about building
systems to remain dependable in the
face of malice, error, or mischance.

As a discipline, it focuses on the
tools, processes, and methods needed to
design, implement, and test complete
systems, and to adapt existing systems
as their environment evolves.”

R. Anderson, “Security Engineering. Second Edition”

Where does Security Engineering stay?

Roles must be:
● defined
● independent
● clear

Processes must be:

● idempotent
● integral
● clean
● traceable
● verifiable
● authentic

Integrations must be:

● authorized
● trustless
● self-protected
● well-known
● controlled
● restricted
● minimum

required

Where does Security Engineering stay?

Roles must be:
● defined
● independent
● clear

Processes must be:

● idempotent
● integral
● clean
● traceable
● verifiable
● authentic

Integrations must be:

● authorized
● trustless
● self-protected
● well-known
● controlled
● restricted
● minimum

required

Clean design

Logic and processes hardening

App platform and integrations hardening

What exactly to do? (simplified approach)

Roles:
Identify points of trust and decision making.
Unify and simplify roles.

Processes (logic):
Identify negative scenarios for decision making logic.
Put controls and verification.

Integrations (platform):
Reduce trust points.

Example 1: Clean roles and design

● Web BE for FE acts as
an IdP for Mobile FE
and an IdM for the
whole app

● Mobile BE for FE
middleware acts as a
notifications service

● Web BE for FE
middleware directly
writes to the BE
database

● BE handles custom
integrations for similar
services

● Mobile app logically
depends on the Web
app

dirty

Example 1: Clean roles and design

● Web BE for FE acts as
an IdP for Mobile FE
and an IdM for the
whole app

● Mobile BE for FE
middleware acts as a
notifications service

● Web BE for FE
middleware directly
writes to the BE
database

● BE handles custom
integrations for similar
services

● Mobile app logically
depends on the Web
app

clean

Example 2: Payment flow hardening, part 1 unprotected

Example 2: Payment flow hardening, part 1 protected

Example 2: Payment flow hardening, part 2 unprotected

Example 2: Payment flow hardening, part 2 protected

Example 3: App-platform hardening

Security controls must be integral part of apps, e.g.:

● Separating data:
○ customer per table with unique token, and/or
○ using per record encryption with unique keys

● Monitoring and sandboxing abnormal activity

● Active client app instance state control

and the most obvious:

● Advanced authN and authZ

etc.

How to achieve it?

● AppSec team integration to engineering
processes at early stages

● Continuous bi-directional education

● Delegation of security engineering to
Software Engineering teams

● Building security controls as integral parts of
products instead of post-application

How to achieve it?

● AppSec team integration to engineering
processes at early stages

● Continuous bi-directional education

● Delegation of security engineering to
Software Engineering teams

● Building security controls as integral parts of
products instead of post-application

Conclusions

● Keep initial Application Security purpose in mind

● You need to work with systems on different layers:
○ application level: app roles, platform, integrations, logic etc.

○ system level: infrastructure, access, business processes etc.

● Embed security instead of applying it, where possible:
○ built-in controls are usually cheaper and much more effective

○ applied solutions are limited to treating application as a whole

● Spread security engineering culture among engineers

● Build-in security engineering to development process

● Security practices help healing engineering in general

Contacts

TG: @awetsky
E-mail: me@vciso.digital
LinkedIn: https://linkedin.com/in/anatoli-m

