
IMPOSSIBLE TASKS
@sergeybelove

History

2017 – FFmpeg, Imagemagick,
Push Notifications VS SMS,
Session handling / cookies with
hundred of subdomains

2020 - Web-Apps <--> Desktop
Apps, promo pages with no
server-side and CORS

2023 – Insecure OAuth, blocking
bruteforce attacks, cookies and
sessions in multidomain env,
passwords

HOW TO STORE
PASSWORDS

How to store passwords

Generations:

■ Plain text

■ md4 and similar

■ md5()/sha1()/sha256() and so on

■ md5(_salt_+$password)

■ md5(_salt_+$password+_pepper_)

■ md5(_salt_+$password+_pepper_)/2

■ sha256(md5(_salt_+$password+_pepper_)/2)

How to store passwords

Generations:

■ Plain text

■ md4 and similar – super easy to bruteforce

■ md5()/sha1()/sha256() and so on – brute-forceable

■ md5(_salt_+$password) – brute-forceable, but a bit more protection against
rainbow tables

■ md5(_salt_+$password+_pepper_) – brutable, but a bit more protection against
rainbow tables (_salt_) + sql dump without access to application itself (_pepper_)

■ md5(_salt_+$password+_pepper_)/2 - ???

■ sha256(md5(_salt_+$password+_pepper_)/2) - ??? x2

How to store passwords

•Argon2
•BCrypt
•Scrypt

Recently, it became better

How to store passwords

Recently, it became better

■ Argon2 - is a great memory-hard password hashing algorithm,
which makes it good for offline key derivation. But it requires
more time, which, for web applications is less ideal.

■ Bcrypt - can deliver hashing times under 1 second long, but
does not include parameters like threads, CPU, or memory
hardness.

■ Scrypt - is maximally hard against brute force attacks, but not
quite as memory hard or time-intensive as Argon2

// https://stytch.com/blog/argon2-vs-bcrypt-vs-scrypt/

How to store passwords

Recently, it became better:
– How many rounds/memory/etc?
– What should be a length of the password to avoid DoS attacks?
– How to check for weak passwords (self-bruteforce)?

How to store passwords
Hardening stage 1/3

How many rounds and length:
• Imagine first: dumped hashes going to bruteforced via botnets, distributed

around the world
• Analyze current typical botnet PC, e.g. Steam hardware report (worst case,

expensive botnet)
• Adjust rates to calculate hash for reasonable/longest time, e.g. your password-

hashing farm should calculate it within 50-100ms
• Length to avoid DoS: just reasonable, seems 1024 is fine so far
• Check weak passwords during login, while you have them in plaintext (throw

stones at those who hash passwords before sending them to the server)

HOW TO STORE PASSWORDS
HARDENING STAGE 1/3

HOW TO
STORE
PASSWORDS
HARDENING
STAGE 1/3

HOW TO STORE
PASSWORDS
HARDENING
STAGE 2/3

How to store
passwords
Hardening
stage 2/3

Attacker got physical access to server with
hashes and have a full access to the filesystem.
How to protect? Let’s use YubiHSM!

■ AES-(128|192|256)-CCM-Wrap: ~10ms

■ ECDSA-P224-SHA1: ~64ms

HOW TO STORE
PASSWORDS

HARDENING STAGE 3/3
Imagine, all the frontends backends are
compromised, but attacker cannot dump

password hashes. How?

HOW TO STORE PASSWORDS
HARDENING STAGE 3/3

Revoke select access to the backend user

Create two stored procedures
1.Extracts salt by provided user
2.Returns true or false, is this specific hash is valid

User enters password -> backend extracts salt for this
user -> calculated hash -> asking DB server if calculated
hash is correct

Hashing server+hsm
Frontend

username -> user_id

Hashes

1) username + password

2) fetch_salt(user_id)

3) Password+salt

4) Calculated hash

5) Verify_hash(hash, user_id)

SBOM SBOM
SBOM

Supply chain
Supply chain
Supply chain
Supply chain

What is the European Cyber Resilience Act
(CRA)?

The European Cyber Resilience Act (CRA) is a legal
framework that describes the cybersecurity
requirements for hardware and software products
with digital elements placed on the market of the
European Union. Manufactures are now obliged to
take security seriously throughout a product’s life
cycle.

Software Bill of Materials (SBOM)

Collecting SBOM is one of the technical
requirements by CRA

3 common ways to implement

Dependency track (go.mod,
requirements.txt, other includes) – well-
known process, but limited coverage
Runtime dynamic trace – coverage
challenge
Unpacking and Reverse Engineering

SBOM - Reverse
Engineering
Collecting SBOM is one of the technical requirements by CRA

Challenges:
• External binary static-linked libraries (multiple versions of cURL, SQLite,

etc)
• Dynamic loading over internet upon needs
• Copy-pasted code from 3rd party

• “Copy-pasted” cryptographic primitives
• UEFI, firmware of network cards etc in case of shipping hardware (WAFs,

email sandboxes)

Only commercial tools are available to solve this task
(say if you know proper free tools?)

ANONYMIZED PSEUDONYMIZED
DE IDENTIFIED

Statistics – is it real?

We still have
random ID

We still have
Remote IP

Solution –
no ID + TOR

CHEERS EVERYONE!
Any questions?

@sergeybelove

