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Whois
• Security Architect at Waratek

• Application security

• Vulnerability and exploit research

• R&D exploit mitigation

• Product development

• Over a decade of professional experience in software and 

security

• MSc Computer Science
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Agenda
• Java serialization basics

• Deserialization of untrusted data

• Understanding the vulnerability and the exploits

• Common misconceptions

• Known mitigations and their limitations

• A new mitigation approach using runtime virtualization

• Q & A

3



4

Serialization 101



Use Cases
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• Remote / Interprocess Communication (RPC/IPC)

• Message Brokers

• Caching

• Tokens / Cookies

• RMI

• JMX

• JMS



Serialization Format
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• Data only

• Class metadata

•Names of data types

•Names of object fields

• Object field values



Serializable is not easy
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”Allowing a class’s instances to be 

serializable can be as simple as adding the 

words “implements Serializable” to the 

class.

This is a common misconception, the truth 

is far more complex.”

- Joshua Bloch

Effective Java
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• Serializable creates:
•a public hidden constructor
•a public interface to all fields of that class

• Deserialization is Object Creation and Initialization
•Without invoking the actual class’s constructor

• Treat it as a Constructor
•Apply same input validation, invariant constraints, and 
security permissions
•Before any of its methods is invoked!

Serializable makes objects untrusted



Serializable is a commitment
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• Audit your Serializable classes

• Create a Threat Model

• Class definitions evolve

•Re-evaluate threat models on every new class version

• Document all deserialization end-points



Attacking Java Serialization
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Focus on attack techniques found by Gabriel Lawrence, 
Chris Frohoff, Steve Breen, Matthias Kaiser, Alvaro Muñoz

• Integrity
•RCE via gadget chains

• Availability
•DoS via gadget chains



Misconception #1
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My app does not use serialization, so I am safe

• Custom Java App

• 3rd party libs (Apache Commons, Spring, Log4j, etc.)

• Middleware (IBM WebSphereMQ, Oracle OpenMQ, Apache 

ActiveMQ, JBoss EAP, etc.)

• App Server (Oracle WebLogic,  IBM WebSphere, etc.)



Who is affected?
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● Oracle

● Red Hat

● Apache

● IBM

● Symantec

● VMWare

● Cisco

● Pivotal

● Atlassian

● Jenkins

 

Virtually everyone!
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•What is the problem here?
•Any available class can be deserialized
•Calling ObjectInputStream.readObject() using untrusted data 
can result in malicious behavior

•Arbitrary code execution
•Denial of Service
•Remote command execution

• Malware / Ransomware infection

Deserialization of untrusted data (CWE-502)

InputStream untrusted = request.getInputStream();
ObjectInputStream ois = new ObjectInputStream( untrusted );
SomeObject deserialized = (SomeObject) ois.readObject();



SFMTA Ransomware Incident
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• San Francisco Municipal 

Transportation Agency

• Ransomware infection via Java 

Deserialization RCE

• ~ 900 computers

• $559k in fares daily loss

• Exfiltrated 30GB of files

Source: https://www.thesslstore.com, https://arstechnica.com

https://www.thesslstore.com/blog/san-francisco-ransomware/
https://arstechnica.com/security/2016/11/san-francisco-transit-ransomware-attacker-likely-used-year-old-java-exploit/


Misconception #2
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I am deserializing trusted data,
so I am safe

• What is trusted data?

• Sources that are trusted today may not be tomorrow



Abusing Java Deserialization
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• Attackers find dangerous classes available in the system

•Not necessarily used by the system

• Dangerous classes (NOT necessarily vulnerable)

•extend Serializable or Externalizable

•utilize their member fields during or after deserialization

•no input validation

• Known as gadget classes

•JRE, App Servers, common libraries, frameworks, Apps

•e.g., Apache Commons Collections InvokerTransformer



Misconception #3
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ACC InvokerTransformer is on my ClassPath, 
therefore I am vulnerable

• Not a vulnerability of the ACC InvokerTransformer

• The vulnerability is the deserialization of untrusted data

• The InvokerTransformer simply made the vulnerability 

exploitable



Unrealistic Gadget
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public class SomeClass implements Serializable {
  private String cmd;
  private void readObject( ObjectInputStream stream )

 throws Exception {
   stream.defaultReadObject();

        Runtime.getRuntime().exec( cmd );
  }
}



Unrealistic Gadget
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public class SomeClass implements Serializable {
  private String cmd;
  private void readObject( ObjectInputStream stream )

 throws Exception {
   stream.defaultReadObject();

        Runtime.getRuntime().exec( cmd );
  }
}

Remote Shell

By Design!



Chaining Gadgets together
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• Attackers create chains of method calls

•Known as gadget chains

•Abuse the deserialization logic

• Gadget Chains are self-executing

•Triggered by the JVM during or after deserialization

•Their goal is to exhibit malicious behavior



Gadget Chain Creation
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• Gadget chain creation is like a game of Scrabble

• Gadgets are letters of the words

• Gadget chains are words

•correct words win the game

• The more classes you have loaded

•the more letters you have

•more chances to create words

•more likely to be exploitable



Do It Yourself
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• Ysoserial, by Chris Frohoff

• PoC payload generation tool

• Tens of ready-to-use gadgets

• https://github.com/frohoff/ysoserial/



Possible Mitigations
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• Avoid object serialization

• WAFs / Firewalls

• Custom Java Security Manager

• Filter trusted / untrusted classes

•Blacklisting

•Whitelisting



Avoid Object Serialization
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• Recommended

• Redesign / re-architect the software

• But you may still be vulnerable

• Deserialization may still occur in components you don’t 

control
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WAFs / Firewalls
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• Block ports and apply basic heuristics

• Can produce false positives

• Lack visibility of the runtime

• Runtime provides full context

• Protection should be in the runtime
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Checking WAFs for False Positives
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     HashMap<String, String> map = new HashMap<>();
     map.put( “org.apache.commons.collections.functors.InvokerTransformer”,
                     “calc.exe” );
     FileOutputStream file = new FileOutputStream( "out.bin" );
     ObjectOutputStream out = new ObjectOutputStream(file);
     out.writeObject( map );
     out.close();
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Filter Untrusted Classes - Blacklisting
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• Always a bad idea

• Never complete

• False sense of security

• Requires profiling

• Not possible if gadget class is needed

• Can be bypassed (see A.Muñoz & C.Schneider Serial Killer: 

Silently Pwning Your Java Endpoints)
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Filter Trusted Classes - Whitelisting
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• Better approach than Blacklisting

• Requires profiling

• Difficult to configure

• No protection if gadget class is needed

• May not protect against Golden Gadgets

•SerialDoS
•SerialDNSDoS
•<= JRE 1.7u21
•Many more...
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Maintaining lists is a commitment
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• Whitelists may need to be updated on new releases

• Blacklists must be updated on every new gadget

• Forgetting to whitelist a class breaks your app

• Forgetting to blacklist a class makes you vulnerable
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Risk-based Management using whitelists
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• Who should be responsible for their maintenance?

• Difficult to apply risk-based management

•How should a class’s risk profile be assessed?

•Devs understand code

•Security teams understand operations
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Whitelisting is not easy
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• Dev asks Security team to whitelist 

a new class: SomeClass
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ns class SomeClass extends BaseClass {

    // nothing suspicious

}

• Security team whitelists the class



Whitelisting is not easy
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• Dev asks Security team to whitelist 

a new class: SomeClass
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ns class SomeClass extends BaseClass {

    // nothing suspicious

}

• Security team whitelists the class

class BaseClass extends HashMap {

}

• Vulnerable to SerialDoS



JEP 290 - Serialization Filtering
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• White / Black listing approach

• 3 types of filters

•Global Filter

•Specific Filter

•Built-in Filters

• Graph and Stream Limits

• Patterns to whitelist classes and package
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Custom Java Security Manager
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• Always a good idea
• It’s a type of whitelisting
• Requires profiling
• Difficult to configure
• Can be bypassed

•Deserialization payload can unset the Security Manager
•See ZoneInfo Exploit (CVE-2008-5353)

• Does not protect against some DoS attacks
• Does not protect against deferred attacks (such as 

finalize())Ex
is
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ObjectInputStream.readObject()
AnnotationInvocationHandler.readObject()

Map(Proxy).entrySet()
AnnotationInvocationHandler.invoke()

LazyMap.get()
ChainedTransformer.transform()

                                                                ...
Method.invoke()

Runtime.getRuntime()
InvokerTransformer.transform()

Method.invoke()
Runtime.exec()
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Source: Chris Frohoff    
Marshalling Pickles 
AppSecCali 2015

Apache Commons Collections Gadget Chain



LinkedHashSet.readObject()
  ...
  LinkedHashSet.add()

...
  Proxy(Templates).equals()
          ...
            ClassLoader.defineClass()
                    Class.newInstance()
                          ...
                               Runtime.exec()

36

Source: Chris Frohoff    
ysoserial

JRE 1.7u21 Gadget Chain



Let’s revisit the core of the problem
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• The JVM is irrationally too permissive

• Does not protect against API Abuse & Privilege Escalation

•It is not even safeguarding its own invariants!

• The JVM makes zero effort to mitigate attacks

• Asking developers to “just write better code” is not the 

answer



Let’s revisit the core of the problem

38

The runtime platform does not provide a secure 
execution environment by default



What do the Standards suggest?
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CERT Secure Coding Standards
● SER08-J. Minimize privileges before deserializing from a privileged context

● SEC58-J. Deserialization methods should not perform potentially dangerous 

operations

MITRE
● CWE-250: Execution with Unnecessary Privileges

• [...] isolate the privileged code as much as possible from other code. Raise 

privileges as late as possible, and drop them as soon as possible.

● CWE-273: Improper Check for Dropped Privileges
• Compartmentalize the system to have "safe" areas where trust boundaries 

can be unambiguously drawn.



Runtime Micro-Compartmentalization
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• Defines boundaries around operations

• Controlled communication between compartments

• Nested micro-compartments

• Fine-grained visibility

• Activated:

•during deserialization

•on method invocations of deserialized objects

•such as finalize()
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Runtime Virtualization
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• If runtime protections share address-space/name-space with an 

untrusted App then the runtime protection also cannot be trusted

• Virtualization is the only proven way for trusted software (e.g. a 

hypervisor) to quarantine and control untrusted software

• Enforces isolation and contextual access control

• Untrusted data are tracked at runtime via - always on - memory 

tainting
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Runtime Privilege De-Escalation
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• Compartments drops specific sets of privileges
•Privileges are API calls, arguments, exceptions, etc
•Principle of least privilege could also be applied

• Compartments sets sensible resource limits

• Prohibits mutation of the JVM’s state

• Prohibits tainted I/O to exit the JVM

• Maintains JVM invariants
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Benefits
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• Allows legitimate functionality to run normally

• Deserialization exploits fail to abuse and compromise the system

• Deserialization payloads cannot bypass security controls

• Removes the need to maintain lists (whitelists / blacklists)

• Protection against

•known and 0-day gadget chains
•golden gadget chains
•all deserialization end-points
•API Abuse
•Privilege Escalation
•DoSN
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Conclusion
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• Java Serialization is insecure by nature

• Very easy to introduce dangerous gadgets inadvertently

• Maintaining lists does not scale

• App Security should not be a responsibility of the user 

or the developer

• The runtime platform must

•be secure-by-default

•safeguard the developer’s code from being abused
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Conclusion

45

Runtime compartmentalization
• Creates a secure environment for untrusted operations 

such as deserialization

Privilege de-escalation
• Reliably mitigates API Abuse and Privilege Escalation 

attacks

Runtime virtualization
• Isolates compartments 
• Enforces access control
• Protects the security controls
• Tracks tainted dataN
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Thank you

Apostolos Giannakidis
@apgiannakidis


