
Deserialization
of untrusted data in Java

Apostolos Giannakidis
@apgiannakidis

Analysis,
current

solutions
& a new

approach

1

OWASP London Meetup
18th May 2017

Whois
• Security Architect at Waratek

• Application security

• Vulnerability and exploit research

• R&D exploit mitigation

• Product development

• Over a decade of professional experience in software and

security

• MSc Computer Science

2

Agenda
• Java serialization basics

• Deserialization of untrusted data

• Understanding the vulnerability and the exploits

• Common misconceptions

• Known mitigations and their limitations

• A new mitigation approach using runtime virtualization

• Q & A

3

4

Serialization 101

Use Cases

5

• Remote / Interprocess Communication (RPC/IPC)

• Message Brokers

• Caching

• Tokens / Cookies

• RMI

• JMX

• JMS

Serialization Format

6

• Data only

• Class metadata

•Names of data types

•Names of object fields

• Object field values

Serializable is not easy

7

”Allowing a class’s instances to be

serializable can be as simple as adding the

words “implements Serializable” to the

class.

This is a common misconception, the truth

is far more complex.”

- Joshua Bloch

Effective Java

8

• Serializable creates:
•a public hidden constructor
•a public interface to all fields of that class

• Deserialization is Object Creation and Initialization
•Without invoking the actual class’s constructor

• Treat it as a Constructor
•Apply same input validation, invariant constraints, and
security permissions
•Before any of its methods is invoked!

Serializable makes objects untrusted

Serializable is a commitment

9

• Audit your Serializable classes

• Create a Threat Model

• Class definitions evolve

•Re-evaluate threat models on every new class version

• Document all deserialization end-points

Attacking Java Serialization

10

Focus on attack techniques found by Gabriel Lawrence,
Chris Frohoff, Steve Breen, Matthias Kaiser, Alvaro Muñoz

• Integrity
•RCE via gadget chains

• Availability
•DoS via gadget chains

Misconception #1

11

My app does not use serialization, so I am safe

• Custom Java App

• 3rd party libs (Apache Commons, Spring, Log4j, etc.)

• Middleware (IBM WebSphereMQ, Oracle OpenMQ, Apache

ActiveMQ, JBoss EAP, etc.)

• App Server (Oracle WebLogic, IBM WebSphere, etc.)

Who is affected?

12

● Oracle

● Red Hat

● Apache

● IBM

● Symantec

● VMWare

● Cisco

● Pivotal

● Atlassian

● Jenkins

Virtually everyone!

13

•What is the problem here?
•Any available class can be deserialized
•Calling ObjectInputStream.readObject() using untrusted data
can result in malicious behavior

•Arbitrary code execution
•Denial of Service
•Remote command execution

• Malware / Ransomware infection

Deserialization of untrusted data (CWE-502)

InputStream untrusted = request.getInputStream();
ObjectInputStream ois = new ObjectInputStream(untrusted);
SomeObject deserialized = (SomeObject) ois.readObject();

SFMTA Ransomware Incident

14

• San Francisco Municipal

Transportation Agency

• Ransomware infection via Java

Deserialization RCE

• ~ 900 computers

• $559k in fares daily loss

• Exfiltrated 30GB of files

Source: https://www.thesslstore.com, https://arstechnica.com

https://www.thesslstore.com/blog/san-francisco-ransomware/
https://arstechnica.com/security/2016/11/san-francisco-transit-ransomware-attacker-likely-used-year-old-java-exploit/

Misconception #2

15

I am deserializing trusted data,
so I am safe

• What is trusted data?

• Sources that are trusted today may not be tomorrow

Abusing Java Deserialization

16

• Attackers find dangerous classes available in the system

•Not necessarily used by the system

• Dangerous classes (NOT necessarily vulnerable)

•extend Serializable or Externalizable

•utilize their member fields during or after deserialization

•no input validation

• Known as gadget classes

•JRE, App Servers, common libraries, frameworks, Apps

•e.g., Apache Commons Collections InvokerTransformer

Misconception #3

17

ACC InvokerTransformer is on my ClassPath,
therefore I am vulnerable

• Not a vulnerability of the ACC InvokerTransformer

• The vulnerability is the deserialization of untrusted data

• The InvokerTransformer simply made the vulnerability

exploitable

Unrealistic Gadget

18

public class SomeClass implements Serializable {
 private String cmd;
 private void readObject(ObjectInputStream stream)

 throws Exception {
 stream.defaultReadObject();

 Runtime.getRuntime().exec(cmd);
 }
}

Unrealistic Gadget

19

public class SomeClass implements Serializable {
 private String cmd;
 private void readObject(ObjectInputStream stream)

 throws Exception {
 stream.defaultReadObject();

 Runtime.getRuntime().exec(cmd);
 }
}

Remote Shell

By Design!

Chaining Gadgets together

20

• Attackers create chains of method calls

•Known as gadget chains

•Abuse the deserialization logic

• Gadget Chains are self-executing

•Triggered by the JVM during or after deserialization

•Their goal is to exhibit malicious behavior

Gadget Chain Creation

21

• Gadget chain creation is like a game of Scrabble

• Gadgets are letters of the words

• Gadget chains are words

•correct words win the game

• The more classes you have loaded

•the more letters you have

•more chances to create words

•more likely to be exploitable

Do It Yourself

22

• Ysoserial, by Chris Frohoff

• PoC payload generation tool

• Tens of ready-to-use gadgets

• https://github.com/frohoff/ysoserial/

Possible Mitigations

23

• Avoid object serialization

• WAFs / Firewalls

• Custom Java Security Manager

• Filter trusted / untrusted classes

•Blacklisting

•Whitelisting

Avoid Object Serialization

24

• Recommended

• Redesign / re-architect the software

• But you may still be vulnerable

• Deserialization may still occur in components you don’t

control

Ex
is

tin
g

M
iti

ga
tio

ns

WAFs / Firewalls

25

• Block ports and apply basic heuristics

• Can produce false positives

• Lack visibility of the runtime

• Runtime provides full context

• Protection should be in the runtime

Ex
is

tin
g

M
iti

ga
tio

ns

Checking WAFs for False Positives

26

 HashMap<String, String> map = new HashMap<>();
 map.put(“org.apache.commons.collections.functors.InvokerTransformer”,
 “calc.exe”);
 FileOutputStream file = new FileOutputStream("out.bin");
 ObjectOutputStream out = new ObjectOutputStream(file);
 out.writeObject(map);
 out.close();

Ex
is

tin
g

M
iti

ga
tio

ns

Filter Untrusted Classes - Blacklisting

27

• Always a bad idea

• Never complete

• False sense of security

• Requires profiling

• Not possible if gadget class is needed

• Can be bypassed (see A.Muñoz & C.Schneider Serial Killer:

Silently Pwning Your Java Endpoints)

Ex
is

tin
g

M
iti

ga
tio

ns

Filter Trusted Classes - Whitelisting

28

• Better approach than Blacklisting

• Requires profiling

• Difficult to configure

• No protection if gadget class is needed

• May not protect against Golden Gadgets

•SerialDoS
•SerialDNSDoS
•<= JRE 1.7u21
•Many more...

Ex
is

tin
g

M
iti

ga
tio

ns

Maintaining lists is a commitment

29

• Whitelists may need to be updated on new releases

• Blacklists must be updated on every new gadget

• Forgetting to whitelist a class breaks your app

• Forgetting to blacklist a class makes you vulnerable

Ex
is

tin
g

M
iti

ga
tio

ns

Risk-based Management using whitelists

30

• Who should be responsible for their maintenance?

• Difficult to apply risk-based management

•How should a class’s risk profile be assessed?

•Devs understand code

•Security teams understand operations

Ex
is

tin
g

M
iti

ga
tio

ns

Whitelisting is not easy

31

• Dev asks Security team to whitelist

a new class: SomeClass

Ex
is

tin
g

M
iti

ga
tio

ns class SomeClass extends BaseClass {

 // nothing suspicious

}

• Security team whitelists the class

Whitelisting is not easy

32

• Dev asks Security team to whitelist

a new class: SomeClass

Ex
is

tin
g

M
iti

ga
tio

ns class SomeClass extends BaseClass {

 // nothing suspicious

}

• Security team whitelists the class

class BaseClass extends HashMap {

}

• Vulnerable to SerialDoS

JEP 290 - Serialization Filtering

33

• White / Black listing approach

• 3 types of filters

•Global Filter

•Specific Filter

•Built-in Filters

• Graph and Stream Limits

• Patterns to whitelist classes and package

Ex
is

tin
g

M
iti

ga
tio

ns

Custom Java Security Manager

34

• Always a good idea
• It’s a type of whitelisting
• Requires profiling
• Difficult to configure
• Can be bypassed

•Deserialization payload can unset the Security Manager
•See ZoneInfo Exploit (CVE-2008-5353)

• Does not protect against some DoS attacks
• Does not protect against deferred attacks (such as

finalize())Ex
is

tin
g

M
iti

ga
tio

ns

ObjectInputStream.readObject()
AnnotationInvocationHandler.readObject()

Map(Proxy).entrySet()
AnnotationInvocationHandler.invoke()

LazyMap.get()
ChainedTransformer.transform()

 ...
Method.invoke()

Runtime.getRuntime()
InvokerTransformer.transform()

Method.invoke()
Runtime.exec()

35

Source: Chris Frohoff
Marshalling Pickles
AppSecCali 2015

Apache Commons Collections Gadget Chain

LinkedHashSet.readObject()
 ...
 LinkedHashSet.add()

...
 Proxy(Templates).equals()
 ...
 ClassLoader.defineClass()
 Class.newInstance()
 ...
 Runtime.exec()

36

Source: Chris Frohoff
ysoserial

JRE 1.7u21 Gadget Chain

Let’s revisit the core of the problem

37

• The JVM is irrationally too permissive

• Does not protect against API Abuse & Privilege Escalation

•It is not even safeguarding its own invariants!

• The JVM makes zero effort to mitigate attacks

• Asking developers to “just write better code” is not the

answer

Let’s revisit the core of the problem

38

The runtime platform does not provide a secure
execution environment by default

What do the Standards suggest?

39

CERT Secure Coding Standards
● SER08-J. Minimize privileges before deserializing from a privileged context

● SEC58-J. Deserialization methods should not perform potentially dangerous

operations

MITRE
● CWE-250: Execution with Unnecessary Privileges

• [...] isolate the privileged code as much as possible from other code. Raise

privileges as late as possible, and drop them as soon as possible.

● CWE-273: Improper Check for Dropped Privileges
• Compartmentalize the system to have "safe" areas where trust boundaries

can be unambiguously drawn.

Runtime Micro-Compartmentalization

40

• Defines boundaries around operations

• Controlled communication between compartments

• Nested micro-compartments

• Fine-grained visibility

• Activated:

•during deserialization

•on method invocations of deserialized objects

•such as finalize()

N
ew

 M
iti

ga
tio

n
A

pp
ro

ac
h

Runtime Virtualization

41

• If runtime protections share address-space/name-space with an

untrusted App then the runtime protection also cannot be trusted

• Virtualization is the only proven way for trusted software (e.g. a

hypervisor) to quarantine and control untrusted software

• Enforces isolation and contextual access control

• Untrusted data are tracked at runtime via - always on - memory

tainting

N
ew

 M
iti

ga
tio

n
A

pp
ro

ac
h

Runtime Privilege De-Escalation

42

• Compartments drops specific sets of privileges
•Privileges are API calls, arguments, exceptions, etc
•Principle of least privilege could also be applied

• Compartments sets sensible resource limits

• Prohibits mutation of the JVM’s state

• Prohibits tainted I/O to exit the JVM

• Maintains JVM invariants

N
ew

 M
iti

ga
tio

n
A

pp
ro

ac
h

Benefits

43

• Allows legitimate functionality to run normally

• Deserialization exploits fail to abuse and compromise the system

• Deserialization payloads cannot bypass security controls

• Removes the need to maintain lists (whitelists / blacklists)

• Protection against

•known and 0-day gadget chains
•golden gadget chains
•all deserialization end-points
•API Abuse
•Privilege Escalation
•DoSN

ew
 M

iti
ga

tio
n

A
pp

ro
ac

h

Conclusion

44

• Java Serialization is insecure by nature

• Very easy to introduce dangerous gadgets inadvertently

• Maintaining lists does not scale

• App Security should not be a responsibility of the user

or the developer

• The runtime platform must

•be secure-by-default

•safeguard the developer’s code from being abused

N
ew

 M
iti

ga
tio

n
A

pp
ro

ac
h

Conclusion

45

Runtime compartmentalization
• Creates a secure environment for untrusted operations

such as deserialization

Privilege de-escalation
• Reliably mitigates API Abuse and Privilege Escalation

attacks

Runtime virtualization
• Isolates compartments
• Enforces access control
• Protects the security controls
• Tracks tainted dataN

ew
 M

iti
ga

tio
n

A
pp

ro
ac

h

46

Thank you

Apostolos Giannakidis
@apgiannakidis

