
NodeJS Security
Still unsafe at most speeds

London, 29th Sep 2016

@DinisCruz

Me
• Developer for 25 years

• AppSec for 13 years

• Day jobs:

• Leader OWASP O2 Platform project

• Application Security Training for JBI
Training

• Part of AppSec team of:

• The Hut Group

• BBC

• AppSec Consultant and Mentor

• “I build AppSec teams….”

• https://twitter.com/DinisCruz

• http://blog.diniscruz.com

• http://leanpub.com/u/DinisCruz

https://twitter.com/DinisCruz
http://blog.diniscruz.com
http://leanpub.com/u/DinisCruz

• @Leanpub (get for 0$)

• http://leanpub.com/u/DinisCruz

–  

Contact

Recent Presentations (you might find interesting)

http://blog.diniscruz.com/2016/09/presentation-turning-tdd-upside-down.html

http://blog.diniscruz.com/2016/05/appsec-and-software-quality.html

http://blog.diniscruz.com/2016/09/presentation-turning-tdd-upside-down.html

http://blog.diniscruz.com/2016/09/presentation-turning-tdd-upside-down.html
http://blog.diniscruz.com/2016/05/appsec-and-software-quality.html
http://blog.diniscruz.com/2016/09/presentation-turning-tdd-upside-down.html

AppSec and Quality

Key to AppSec - The AppSec Risk Workflow

http://blog.diniscruz.com/2016/09/presentation-turning-tdd-upside-down.html

http://blog.diniscruz.com/2016/09/presentation-turning-tdd-upside-down.html

When creating tests on the ‘Fix’ stage, the focus (&
time allocated) is on  

fixing the bug (not on testing it)

When creating tests on the ‘Issue Creation’ stage, the
focus (& time allocated) is on  

how to test it and what is its root cause

http://blog.diniscruz.com/2016/09/presentation-turning-tdd-upside-down.html

Start with Passing tests, because:

NODEJS SECURITY

• Just as good and bad as Java or .NET

• We are still in the same place

• Not many lessons learned

• But at least we are building bigger and faster
websites (with more house-power and assets)

Basically….

• native JSON

• super fast
– V8 Engine executed some javascript code  

faster than (equivalent) C++

• async pattern
– one event loop thread

– highly scalable

• developer friendly
– fast development

– REPL (Read, Eval, Print, Loop)

– enables CI and CD (easy integration with GitHub, Travis, etc…)

• Other languages
– ECMAScript 6

– CoffeeScript (my favourite language)

– Jade (Html template engine)

– Typescript

What is good 1/3

• community Innovation
– pure Open Source child (with strong corporate support)

– equivalent io.js fork should had happened to Java and .NET

– crazy innovation speed and technologies like JsDOM

– NodeJS Security Project

• ssl is easy

• enterprise ready
– used by massive sites with great success

– amazing live monitoring and instrumentation tools (and SAAS solution)

– container friendly (i.e. docker)

• promotes Microservices

• great test culture (TDD)

• growing security maturity
– null checks on file paths

What is good 2/3

• WallabyJS
– real time unit test execution

– real time code coverage

What is good 3/3

Just to be clear….  

nodeJS + CoffeeScript + wallaby  

is my most productive 
and enjoyable dev environment 

where I easily write  
secure code with 100% code coverage

• Same old OWASP Top 10

• Have to work hard to write secure apps
– not out of the box

– CSRF protection for example

• REST Injection
– can be as bad as SQL Injection

• Model Binding is alive

What is bad 1/5

• It’s Javascript
– not strongly typed

• with crazy type conversions and equals

• decimal conversion problems

– ability to overwrite (via prototypes) other API’s methods

– interpreted code (strings can become code)
• Eval, file save or ‘dynamic requires’ can lead to RCE

• Strings everywhere (we have to ‘ban strings’)

• Pattern: Proxy to internal Systems (with no data
validation checks for more data)

What is bad 2/5

• NPM
– just as bad and crazy as Maven, NuGet, CocoaPods

– very little security checks performed in new modules
• few security eyeballs

• dependency checks via https://nodesecurity.io/ via nsp

– just look at what is inside some npm packages
• See I Peeked Into My Node_Modules Directory And You Won’t

Believe What Happened Next https://medium.com/friendship-
dot-js/i-peeked-into-my-node-modules-directory-and-you-wont-
believe-what-happened-next-b89f63d21558

What is bad 3/5

https://nodesecurity.io/
https://medium.com/friendship-dot-js/i-peeked-into-my-node-modules-directory-and-you-wont-believe-what-happened-next-b89f63d21558

• Unhanded errors will crash server (can be a good thing)

• Server side HTML and Javascript generation
– source of tons of XSS

• Secure configuration is hard

• Weak code visualisation for
– Attack surface

– AST

– Code Paths

• Limited support for sandboxing code and CAS (Code
Access Security)

What is bad 4/5

• Hard to do SAST (Static Analysis)

• NoSQL databases vulnerable to Injection
attacks

• Express support for ..%2f in url segments

• … I’m sure there are many more …

What is bad 5/5

OWASP AND NODEJS

• A1 Injection

• A2 Broken Authentication and Session Management

• A3 Cross-Site Scripting (XSS)

• A4 Insecure Direct Object References

• A5 Security Misconfiguration

• A6 Sensitive Data Exposure

• A7 Missing Function Level Access Control

• A8 Cross-Site Request Forgery (CSRF)

• A9 Using Components with Known Vulnerabilities

• A10 Unvalidated Redirects and Forwards

OWASP Top 10 (for 2013) is all there

OWASP Juice Shop Tool Project

OWASP NodeGoat Project

NodeJS Security Book

https://secureyournodejs.com

https://secureyournodejs.com

KNOW THE RISK OF YOUR
APPLICATION

• You need to have them mapped and accept
the risk

• Here are the risks currently accepted for the
OWASP/Maturity-Models project (NodeJS
app) 
 
 

– https://github.com/OWASP/Maturity-Models

View security issues as features

https://github.com/OWASP/Maturity-Models

…using GitHub Labels to create Risk Workflow

CASE STUDY: WHEN I CREATED A
VULNERABILITY

• Here is the code I wrote (at the Data Layer)  
 
 
 
 

• This method is designed to be called by the
controller (i.e. rest api endpoint):

Feature request: Allow data editing on UI

Feature request: Allow data editing on UI

Regression test that passes on issue

Fix for Path transversal

Regression test

LET’S SEE HOW IT LOOKED IN
THE CODE

…before the vuln is created

…when the vuln is created

… adding comments

…after issues are created

…improving comments

…updating issues after 1st fix

… after final fix

… more issues where found later

Thanks, any questions

@diniscruz

dinis.cruz@owasp.org

