
Surrogate Dependencies
(in NodeJS)

London, 29th Sep 2016

@DinisCruz

Me
• Developer for 25 years

• AppSec for 13 years

• Day jobs:

• Leader OWASP O2 Platform project

• Application Security Training

• JBI Training, others

• Part of AppSec team of:

• The Hut Group

• BBC

• AppSec Consultant and Mentor

• “I build AppSec teams….”

• https://twitter.com/DinisCruz

• http://blog.diniscruz.com

• http://leanpub.com/u/DinisCruz

https://twitter.com/DinisCruz
http://blog.diniscruz.com
http://leanpub.com/u/DinisCruz

A SURROGATE DEPENDENCY

Defintion

https://en.wikipedia.org/wiki/Surrogate_model

https://en.wikipedia.org/wiki/Surrogate

https://en.wikipedia.org/wiki/Surrogate_model
https://en.wikipedia.org/wiki/Surrogate

• It tests the API and replays responses
– Use integration tests to ‘lock’ the api used

– Save responses in JSON format

– Replay data to client

• Allow client to be offline

What is it?

Locking the API using tests

API
A ‘client’

Network

APINetwork

Git repo with data
store as JSON files

Integration tests

Replay stored JSON

Git repo with data
store as JSON files

Surrogate
Dependency

A ‘client’
Network

Modify data  
(optional)

API

Client/app is running Offline!

Adding security tests (to server)

APINetwork

Git repo with data
store as JSON files

Integration tests

Insert Payloads here To attack the server

Adding Security Tests (from server)

Git repo with data
store as JSON files

Surrogate
Dependency

A ‘client’
Network

Modify data  
(optional)

Insert Payloads here

To attack the client  
(from the server)

What kind of issues can be found this way?

- XSS
- SQL Injection
- CSRF (to server)
- DoS
- Steal Sessions tokens

Once you know where the client is vulnerable

Once you know which 
data received from the
server will exploit the client

You ‘ask’ the API  
where did  
that data  

come from?

A ‘client’
Network API

… and follow the rabbit holes

Which might lead to  
and external source  

(i.e. attacker)

yes

Request for xyz url
(GET, POST, PUT)

in
Cache?

Modify data  
(optional)

no Load data from
real service

Save data to
cache

Git repo
with data
store as

JSON files

Load data from
cache

A ‘client’

With Proxy

Send data to user

Demo

Running a mobile app ‘offline’

BUILDING A TEST FRAMEWORK

• Fragile dev and QA environments

• Inefficient TDD (specially for Integration tests)

• Lack of ‘production-like’ data

• Can’t work offline

• Lots of manual testing

• Massive Versioning issues with dependencies (namely Web
Services)

• Weak Schema contracts
– remember that ‘String’ is not a type and Strings are not Strongly typed :)

• No/few dedicated micro services for their app

Problems that developers have

• We need projects/activities that align AppSec
needs with Dev needs

• The ‘Surrogate dependencies’  
(which allows the app to run offline is one of
those projects)

Key for AppSec is to make Devs more productive

Aligning AppSec with Dev

What AppSec  
want

What Developers  
want

Surrogate Dependencies are here

• Anything that is external to the application
under development
– Web Services

– Message Queues

– Inbound Http traffic (i.e. users)

– Other protocols (SMTP, FTP)

• Basically all inputs (i.e. the real Attack surface)

• For now lets focus on Web Services (i.e. json,
xml and html traffic)

What do I mean by an Dependency

• Be able to answer:
– What APIs are used at each layer?

– What is their schema?
• ‘string’ is not a type

• we need to ban  
strings 

– What happens if the  
server’s response is  
is malicious

Why a new Test Framework

http://www.grahamlea.com/2015/07/microservices-security-questions/

• What happens if data is malicious:
– from Client

– from Server

– to Server

• How can we have assurance of the
Application properties
– “…prove there are no exploitable XSS…”

Answer Questions

• It’s JSON Native

• Fast

• Effective TDD

• Powerful APIs

• JsDom

Why NodeJS

TECHNOLOGIES

• Ability to simulate the browser DOM in Node

• Even supports complex frameworks (and
event loops) like Angular
– yes, you can run on NodeJS (i.e. server) Angular

controllers, directives, services (with live Http Requests)

JSDom

WallabyJS

• WallabyJS
– real time unit test execution

– real time code coverage

• That hit the live server and save the JSON

Unit/Integration tests

• Content is stored as JSON on the file system 
 
 
 
 
 
 

• Version control received data (using git diffs)

Git as database

• Very good for data storage

• Powerful diffs (between test execution runs)
– provide visualisation of dynamic data

– identify inconsistent data

• Write tests against store JSON to confirm schema, data
received
– easy to identify bad server data deliveries (for example: multiple

requests required, when one should be used)

– Over supply of data (i.e. assets sent when they are not needed by client)

• Confirms ‘happy paths’ data

• Will be used for payload injections and DoS tests

JSON

• Surrogate dependency is a model/template
for dedicated micro-services

• Eventually Microservices should replace the
original Surrogate dependency

• the Microservices will have their own
Surrogate dependencies

Microservices

• Used to load html pages and render the
Javascript

• Much better than selenium and PhatomJS
since it is native to Node

• Test execution is super fast

JSDom

• New module will add ability to act like a proxy
– make requests to live server when request is not in

cache

– save response from live server in cache

• Idea is to auto-generate the tests for the
requests recorded

• This will make it easier to create new
‘surrogate dependencies’ projects

XSS Proxy

• Best surrogates are the real code running inside a container
– 2nd best solution is when the surrogates only exist on the 2nd level of

dependencies

• Btw, if the app your are coding today is not designed to
support containers (i.e micro services) in the near future

• Where you will be able to run dozens, hundreds or
thousands versions in a separate container (aka Docker)
– You are not aligned with the next major dev revolution (similar to git)

– In a couple years, your app will be as ‘legacy’ as what you today call
‘legacy’

– key vision is that each ‘user’ should run in it’s own container

Containers

• XSS Proxy is already there
– https://github.com/o2platform/node-ssl-strip

• Other code coming soon to OWASP

• Be involved :)
– Your developers will love it and you will dramatically

improve yours testing capabilities

Open source project

https://github.com/o2platform/node-ssl-strip

Thanks, any questions

@diniscruz

dinis.cruz@owasp.org

