

Wordpress Security
Not justan oxymoron - Steve Lord

Wordpress VulnSecurity?
What you talking about, Willis?

● Who is this guy?
● slord@mandalorian.com
● @stevelord on twitter
● http://www.mandalorian.com/

● I test pens and kick out the bad guys

mailto:slord@mandalorian.com
http://www.mandalorian.com/

A Word about WordPress
.com that is

● It's easy to point and laugh
● Good incident handling
● Open responses
● Passwords encrypted
● 'low level root exploit' used

● Wordpress.org not affected

Who uses it?
How to spot Wordpress

Who uses it?
How to spot Wordpress

Common Wordpress
Security Fail

(and how to avoid it)

PHP Error Reporting
Start at the bottom of the barrel

● Obligatory Google Dork
● "php fatal error" inurl:wp-content

-error_log -php_errorlog
● The fix (in php.ini)

● display_errors = Off
● Restart HTTP server daemon

Roll Your Own Auth
Please don't

● “We can't use the standard
login/registration page for our users!”
● Enterprise Solution: Rewrite the

login/registration mechanism from scratch
● Better: Let's download a plugin that lets us

change the page
● The fix:

● RapeModify wp-login.php HTML
● PillageChange wp-register.php HTML
● DefileTweak wp-admin/wp-admin.css

SQL Injection
Someone get mustlive on the phone quick!

SQL Injection
The 90s called and want their framework back

● Wrong
<?php

$wpdb->query(
“UPDATE $wpdb->posts
SET post_title = '$title'
WHERE ID = $id”

);
?>

SQL Injection
The 90s called and want their framework back

● Less Wrong
<?php

$title = esc_sql($title);
$id = absint($id);
$wpdb->query(

“UPDATE $wpdb->posts
SET post_title = '$title'
WHERE ID = $id”

);
?>

SQL Injection
The 90s called and want their framework back

● Right
<?php

$wpdb->update(
$wpdb->posts,
array('post_title' => '$title'),
array('ID' => $id)

);
?>

SQL Injection
Getting it right

● Useful functions
● esc_sql() - escape SQL queries
● absint() - convert id to positive integer
● $wpdb->update()
● $wpdb->insert()
● $wpdb->prepare()
● $wpdb->get_var()

SQL Injection
wpdb->prepare() hotness

<?php
$key = “some input”
$val = 1337
$wpdb->prepare(“

INSERT INTO $wpdb->postmeta
(post_id, key, val)
VALUES (%d, %s, %s)”,
array(10, $key, $val))

);
?>

Cross-Site Scripting
When input validation gets too hard

XSS
Not just a way for appsec guys to earn ££££s

● Wrong
<?php

$foo = $_GET[“echo”];
echo 'You submitted:' . $foo;
);

?>

XSS
Not just a way for appsec guys to earn ££££s

● Less wrong
<?php

$foo = htmlspecialcharacters(
$_GET[“echo”]);
echo 'You submitted:' . $foo;
);

?>

XSS
Not just a way for appsec guys to earn ££££s

● Right
<?php

$foo = $_GET[“echo”];
echo 'You submitted:' .
esc_html($foo);
);

?>

XSS
Getting it right

● Useful functions
● esc_attr_e() - for translated tag attributes
● esc_html() - for general HTML
● esc_attr() - tag attributes
● esc_url()
● esc_js()

CSRF
Serious business

CSRF
Pronounced 'Sea Surf' according to the Internet

● Cross Site Request Forgery ({C|X}SRF)
● User is tricked into what looks like action A
● Site receives request for action B

– Doesn't distinguish between action and intent
● Action B happens

● e.g: http://bank.com/transfer.php?
amount=10000&to=steve

CSRF
Nonces and other HTTP perversions

● The fix:
● 'Nonces'

– One-off user-specific time-limited secret keys
– Used where actions occur (e.g. CRUD)

● This is what POST is for, but is not exclusive

CSRF
Getting to grips with Wordpress Nonces

<?php wp_nonce_field(
$action, $name, $referrer, $echo)
?>

● $action – What you're doing (default -1)
● $name – Nonce field name (default

_wpnonce
● $referer – Set referer field for validation

(default true)
● $echo – return hidden form field? (default

true)

CSRF
Verifying the Nonce

<?php wp_nonce_field(
if (empty($_POST) || !
wp_verify_nonce($_POST['name'],
'action'))
{
 die ('Bad nonce.');
}
else
{
 // process form data
}

?>

CSRF
Some extra value

● When in admin
● Use check_admin_referer()

● When not in admin
● Check referer generally

● AJAX submission?
● $nonce = wp_create_nonce('action');
● &ajax_nonce=$nonce
● check_ajax_referer('action');

3rd Party Plugins/Themes
Would you trust code written by these guys?

3rd Party Plugins/Themes
A quick and dirty sanity check

● Did you write it yourself?
● Did you get it from Wordpress.org?
● Have you had direct contact with the author?
● Did you have to pay for it?
● Have you got the 'pro' version?
● Has the author released an update in the

past year?
● Is it compatible with current wordpress?

● The more you answered no to, the more you
need to audit *all* of the code

3rd Party Plugins/Themes
A quick and dirty sanity check

● Check for code obfuscation
● find . | xargs grep -i base64 > base64.txt

● Check for links to external sites
● find . | xargs grep '\<[[:alpha:]]*://[^/]*'

> urls.txt
● Check for potentially malicious content

● find . | xargs grep -Ei 'iframe|src|
javascript:|eval|include' > dodgy.txt

3rd Party Plugins/Themes
A quick and dirty sanity check

● Use the previous slide as a starting point
● Things can be hidden anywhere

– Don't assume a .gif is a .gif until you've
seen it in a text/hex editor

● Make sure you cover all code (php, JS)
and data

● http://wpmu.org/why-you-should-never-
search-for-free-wordpress-themes-in-google-
or-anywhere-else/

Miscellaneous Mistakes
Entering the mouth of madness

Miscellaneous Mistakes
Entering the mouth of madness

Can the user do that?
Authentication != Authorization

<?php current_user_can($capability);?>
● $capability – the capability you're checking

for e.g. 'manage_options'
● Use this everywhere if you don't want public

access
● Options for more granularity

● Role scoper plugin
● Members plugin

● User levels deprecated in 3.0

Exec() and it's kin
Here be dragons

● exec(), passthru(), proc_*, shell_exec(),
system(), popen() and backticks (`) are evil
● Do not use them

Exec() and it's kin
Here be dragons

● If you must use them
● Don't use user-input for arguments
● Set safe_mode_exec_dir in php.ini
● Specify the full executable path
● Use escapeshellcmd() on $cmd before

execution

Exec() and it's kin
Here be dragons

● If you must usepass them user-supplied
input
● Set safe_mode_exec_dir in php.ini
● Specify the full executable path
● Use escapeshellcmd() on $cmd before

execution
● Use escapeshellarg() on arguments

before execution

Exec() and it's kin
Here be dragons

● If you must usepass them user-supplied
input
● Set safe_mode_exec_dir in php.ini
● Specify the full executable path
● Use escapeshellcmd() on $cmd before

execution
● Use escapeshellarg() on arguments

before execution
● Consider a career change

Remote File Include (RFI)
Or week 2 of Learn PHP in 21 days

<?php
$inc = $_GET['inc'];
include($inc);

;?>
● Don't do it. Ever.
● Use switch/case with hardcoded (from

a config file) values

Fun with .htaccess
A few bits to take away

Order Allow,Deny
Deny from all
<Files ~ "\.(css|jpe?g|png|gif|js)$">
 Allow from all
</Files>
ServerSignature Off

● Limits access to specific file extensions
● Add your own extensions as needed
● Tells Apache not to report version

Fun with .htaccess
Add to /wp-admin/.htaccess

<Files ~ "\.(php)$">
Order Deny,Allow
Allow from 127.0.0.1
Deny from all
</Files>

● Limit /wp-admin/ access to localhost
● Access via SSH tunnel
● Change/Add IP for remote access from

fixed network

Testing Wordpress
Yes, you can

● Useful tools
● Plecost

– http://code.google.com/p/plecost/
● Netsparker

– http://www.mavitunasecurity.com/
● Acunetix (free edition, XSS only)

– http://www.acunetix.com/
● Burp Suit Pro

– http://www.portswigger.net/
● OpenVAS (with local checks)

– http://www.openvas.org/index.html

http://code.google.com/p/plecost/
http://www.mavitunasecurity.com/
http://www.acunetix.com/
http://www.portswigger.net/
http://www.openvas.org/index.html

Before you go live
Things to do

● Some ideas
● Use rewrite rules to redirect wp-login.php

and /wp-admin to SSL only
● Lock down wp-admin, phpmyadmin etc.
● Minimise use of 3rd party plugins and

themes
● Must do's before going live

● Audit your own code
● Audit 3rd party plugins and themes

After you go live
Things to do

● Audit plugin/theme upgrades prior to
application
● At least have a security process

● App test on major upgrades
● Read the changelog

● Hunt the bug
● Verify the fix

● Use liberal volumes of common sense

Thanks for having me
It keeps me off the streets

This presentation brought to you by DJ Shadow, UNKLE, Death in Vegas
and Caffeine. Lots of sweet, sweet caffeine. My next talk will be at Bsides
London on Breaking, Entering and Pentesting on April 20th and at DC4420
that evening about evading defences. CC-NC-SA ©2011 Mandalorian.

