
$ git clone https://github.com/PentesterLab/codereview-php 
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$ git clone https://github.com/PentesterLab/codereview-golang  

Before we start:

https://github.com/snyff/Talks/blob/master/Intro_Code_Review_Owasp_BA.pdf 

https://github.com/PentesterLab/codereview-php
https://github.com/PentesterLab/codereview-golang
https://github.com/snyff/Talks/blob/master/Intro_Code_Review_Owasp_BA.pdf


Louis Nyffenegger 
louis@pentesterlab.com

Web Security  
Code Review Workshop
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•Founder and CEO of PentesterLab 

•Ex: Pentester, Code Reviewer, AppSec Engineer

ABOUT ME:     



•Online Platform to Learn Code Review and Web Hacking / 
Web Penetration Testing 

•Online Live Training Sessions on Web Security Code Review



This WorkShop

• Introduction


• Routing


• Patterns
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• CVE Analysis 


• CVE-2008-1930


• Conclusion


• Hands-On Code Review



INTRODUCTION🚀
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Security Code Review is in demand

• Ability to find complex bugs 
• Ability to find bugs that scanners can't find 
• Ability to review changes prior to deployment (Agile, AppSec) 
• Ability to find new classes of vulnerabilities 

• Powerful skill for: 
• Developers 
• Penetration Testers 
• Security Engineers 
• Vulnerability Researchers / Exploit writers 
• QA/Test Engineer
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Expectations…
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Reality…
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Security Code Review...
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📂
Tooling  

(SAST, Grep, AI, ...)

Source  
Code

✅ XSS 
❌ SQL Injection 
☐.... 
☐.... 
☐.... 
☐.... 
☐.... 
☐.... 
☐....

☐.... 
☐.... 
☐.... 
☐.... 
☐.... 
☐.... 
☐.... 
☐.... 
☐....

⚙ 🕵😭
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📂
Source  
Code

✅ XSS 
☐.... 
☐.... 
☐.... 
☐.... 
☐.... 
☐.... 
☐....

Patterns,  
Weaknesses, 
Vulnerabilities  

...
🕵

Tooling  
(SAST, Grep, AI, ...)

⚙😊

One of the main advantages of this approach is that it 
helps identify “unknown unknowns”—issues that 

automated tools may overlook.

Security Code Review...

✅ XSS 
☐....



Should you know the language?

A good rule of thumb is that you need to know 
things that developers don't know: 
• Something about a format used? 
• A way to bypass a filter? 
• Something about threat modelling? 
• Something about the language? 

The more things you know that the developers 
don't, the more likely you are to find vulnerabilities
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Should you know how to write code?

• It definitely helps! 

• You don't need to be a "real" developer but knowing how 
applications are developed will speed up your work 

• The more code you write, the more likely you are to guess: 
• What mistakes developers will make? 
• What shortcuts developers will take? 

• The less you know, the more patient you will have to be
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Threat modeling

• Key component of code review 

• If you don't know what can go wrong, you don't 
know what to check for 

• Knowing about common bug classes for each type 
of feature or application is key 

• Threat modeling gives "direction" to your review 
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Threat modeling: How to learn?

• There are many methodologies for threat modeling 

• For web security code reviews, your best options 
are to: 

• Read pentest reports 
• Read bug bounty findings and write-ups 
• Follow research presented at conferences 
• Analyze CVE
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Picking your 
targets to 

learn...
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Picking your targets to learn...

• You need to find targets that are not too easy 
• You need to find targets that are not too hard 

• You need to find targets that allow you to 
grow 

• You need to find targets to build resilience
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Picking your targets to learn...
1. Snippets 

2. Diff from known/public vulnerabilities/CVE 

3. Small or simple Libraries 

4. Bigger or more complex Libraries 

5. Small Applications 

6. Larger Applications 

7. Hard Targets 
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Defining Success in Security Code Review

• You don't want to base your success based on the number of 
vulnerabilities you find or the impact of the vulnerabilities you find 
(especially when learning) 

• Success should be based on: 
• Your progression in understanding a codebase 
• Learning ways a check or filter is implemented 
• Finding small weaknesses or potential improvements 
• Understanding complex patterns 
• Discovering new patterns (with and without security implications)
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READING CODE

"An hour of code reading can 
save you a minute of reading the 

documentation"

🤓
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READING THE CODE
Notice: 
• Things that are unusual 
• When people reinvent the wheel 
• Sketchy code 
• Complexity 
• Unchecked return values 
• Checks: 

• What are they trying to prevent?  
• Are they preventing it properly?  
• Is there something else they should take care of but 

they don't? 

🤓
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Reading code

• Every time you encounter a new function or 
method: 

• Read the documentation 
• Look for potential security improvements 

and issues 
• "Fuzz" it (REPL or docker) 
• Keep notes 
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*Bonus point for doing this over multiple 
versions of the same method/function...



Routing 🛣



Routing?

How an application maps:


https://...../foo/1234/bar  to actual code...


• And what is the impact on 


• What you need to review?


• How you will perform your review?


• Multiple ways to define routing: FS, programmatically, configuration
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https://...../foo/1234/bar


File System based

• Very common with (old, small, pure, immature) applications (mainly PHP)


• Accessing /index.php is mapped to running the code in the file [WEBROOT]/
index.php


• Any file in the web root can potentially be accessed.


• The file's extension or the file's location will decide if the file gets:


•  interpreted/executed: the result of the execution is returned to the client.


•  served: the content of the file is returned to the client.
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Programmatically defined

• Code is used to map a 
route to code
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PATTERNS...
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Patterns

• A lot of issues in security are completely 
independent of the programming language 

• In this section, we are going to explore patterns 
with implementation in multiple programming 
languages 

• Make sure you focus on the pattern

When the sage points at the moon, the fool looks at the finger.
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Filter -> Modify -> Use

• The code does three things:


1. Filters for malicious values


2. Modifies the value


3. Uses the value
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CAN WE REINTRODUCE SOME 
OF THE FILTERED VALUES BACK 

USING THE MODIFICATION?



Filter -> Modify -> Use
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Filter -> Modify -> Use

1
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Filter -> Modify -> Use

2

1
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Filter -> Modify -> Use

2

1

hack.jsp#34



Filter -> Modify -> Use
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Filter -> Modify -> Use

Filter

36



Filter -> Modify -> Use

Modify!
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Filter -> Modify -> Use

The modification may 
reintroduce things the code 
filtered...
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Filter -> Modify -> Use

Normalize then filter/escape
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Matching is hard
Ends with, contains, starts with...

• When matching strings without using a Regular Expression, a lot of people 
get confused on what they are trying to achieve.


• "ends with", "contains", "starts with" may feel like they work similarly for the 
happy path but they rarely do in reality.
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Matching is hard
Ends with, contains, starts with...
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Matching is hard
Ends with, contains, starts with...

louis@libcurl.so.pentesterlab.com
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mailto:louis@libcurl.so.pentesterlab.com


Ends with, contains, starts with...
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Not matching the correct value...



Ends with, contains, starts with...
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Not matching the correct value...



Ends with, contains, starts with...
Not matching the correct value...

45 r.URL.String() vs r.URL.Path



Reinventing the wheel!

• Never a good idea (always a bad idea when dealing with crypto)


• For most common operations, programming languages provide built-in functions or methods, 
such as:


• String manipulations: uppercase, lowercase, split, cut


• File manipulations: getting the file extension from a filename, extracting the filename from a 
path, etc.


• When developers write their own versions, they’re likely to overlook odd edge cases that the 
built-in functions already handle 


• Compare the built-in source code with the code written by the developers!
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Play Session Injection
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🚩 They are 
reinventing a 
serialiser

Play Session Injection
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Play Session Injection
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Session: {"key1": "value1", "key2": "value2"}


becomes  "\x00key1:value1\x00\x00key2:value2\x00"



Play Session Injection
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Session: {"username": "louis", "email": "louis@pentesterlab.com"}


becomes  "\x00username:louis\x00\x00email:louis@pentesterlab.com\x00"



Play Session Injection
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They loop 
through the 
elements in the 
session

Play Session Injection
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They loop through 
the elements in the 
session

Play Session Injection
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"\x00key1:value1\x00\x00key2:value2\x00" becomes:


     "\x00key1:value1\x00"  => session.put("key1" , "value1")


"\x00key2:value2\x00" => session.put("key2" , "value2")



Play Session Injection
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🚩
No checks to 
prevent separators 
(':' or NULL BYTE) in 
the value

Play Session Injection
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As a client, we most 
likely only have 
access to the value.

Play Session Injection
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Play Session Injection

57 username=[USER-CONTROLLED]



Play Session Injection

58
username=louis



Play Session Injection
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username=louis => session.put("username", "louis")  



Play Session Injection
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username=louis => session.put("username", "louis") 
=> "\x00username:louis\x00"



Play Session Injection
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username=louis\x00\x00username:admin



Play Session Injection
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username=louis\x00\x00username:admin
=> session.put("username", "louis\x00\x00username:admin")



Play Session Injection
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username=louis\x00\x00username:admin
=> session.put("username", "louis\x00\x00username:admin")

=> \x00username:louis\x00\x00username:admin\x00



Play Session Injection
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username=louis\x00\x00username:admin
=> session.put("username", "louis\x00\x00username:admin")

=> \x00username:louis\x00\x00username:admin\x00



They loop through 
the elements in the 
session

Play Session Injection
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\x00username:louis\x00\x00username:admin\x00 becomes


     "\x00username:louis\x00"  => session.put("username" , "louis")


"\x00username:admin\x00" => session.put("username" , "admin")



They loop through 
the elements in the 
session

Play Session Injection
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\x00username:louis\x00\x00username:admin\x00 becomes


     "\x00username:louis\x00"  => session.put("username" , "louis")


"\x00username:admin\x00" => session.put("username" , "admin")  (OVERWRITE)



CVE  
ANALYSIS
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Why?

• Deliberate practice


• Learning new patterns


• Learning how to fix issues


• Find incomplete patches
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Analysing CVE (Code Review)

• Read the advisory! 


• Clone the repository


• Find the tag for the vulnerable and fixed versions


• Extract a patch/diff


• Analyse the patch/diff:


• What does the vulnerable code look like?


• What does the fix look like?


• Is this properly fixed?


• More vulnerabilities in the same area?
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6 digits

5 digits
26%

4 digits
36%

3 digits
23%

2 digits
Expectations vs Reality

575 CVEs (diff based on 
vulnerable version versus 
patched version):
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[VULNERABLE ] 👩💻 🪲   [PATCHED]


[VULNERABLE ] 👩💻  🪲 👩💻  [PATCHED]


[VULNERABLE ] 👩💻 🧑💻 🪲 👨💻 [PATCHED]


[VULNERABLE ] 👩💻 🧑💻 🪲 👨💻👩💻  [PATCHED]


[VULNERABLE ] 👩💻 🧑💻 🪲 👨💻👩💻🧑💻  [PATCHED]

Expectations vs Reality
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Methodology



Analysing CVE (Code Review)
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https://github.com/zeromicro/go-zero/security/advisories/GHSA-fgxv-gw55-r5fq



Analysing CVE (Code Review)
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https://github.com/zeromicro/go-zero/security/advisories/GHSA-fgxv-gw55-r5fq



Analysing CVE (Code Review)
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https://github.com/zeromicro/go-zero/security/advisories/GHSA-fgxv-gw55-r5fq



Analysing CVE (Code Review)
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https://github.com/zeromicro/go-zero/security/advisories/GHSA-fgxv-gw55-r5fq



Analysing CVE (Code Review)
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https://github.com/zeromicro/go-zero/security/advisories/GHSA-fgxv-gw55-r5fq



Analysing CVE (Code Review)
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https://github.com/zeromicro/go-zero/security/advisories/GHSA-fgxv-gw55-r5fq
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They wanted to allow 
an origin and all 
subdomains of the 
origin...
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They actually allowed all 
hostnames ending with  
the origin
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pentesterlab.com -> 
hackedbypentesterlab.com

They actually allowed all 
hostnames ending with  
the origin

http://pentesterlab.com
http://hackedbypentesterlab.com


Analysing CVE (Code Review)
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Analysing CVE (Code Review)
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CVE-2008-1930





















admin1

admin:1353464343:16849b89783b5918a41bbd29a3c4bbf6

admin

1353464343

16849b89783b5918a41bbd29a3c4bbf6

hmac(admin1353464343)



admin1

admin1:1353464343:1ba7d82099dd6119781b54ecf8b79259

admin1

1353464343

1ba7d82099dd6119781b54ecf8b79259

hmac(admin11353464343)



admin1

admin:11353464343:1ba7d82099dd6119781b54ecf8b79259

admin

11353464343

1ba7d82099dd6119781b54ecf8b79259

admin1:1353464343:1ba7d82099dd6119781b54ecf8b79259

hmac(admin11353464343)
hmac(admin11353464343)



The Fix
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Lesson learned:  
Always include a delimiter between values 

when signing data.



CONCLUSI🧐N
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Assumptions!
Developers, yours, ...
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“All important targets require 
substantial initial investments 

before discovering and 
consistently discovering 

vulnerabilities.” 
- Silvio Cesare
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Keeping in touch
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https://pentesterlab.com/


https://pentesterlab.com/live-training/ 

@pentesterlab.com and @snyff.pentesterlab.com 

https://www.linkedin.com/company/pentesterlab/

https://www.linkedin.com/in/snyff/

@PentesterLab and @snyff 

louis@pentesterlab.com 

https://pentesterlab.com/
https://pentesterlab.com/live-training/
http://pentesterlab.com
http://snyff.pentesterlab.com
http://pentesterlab.com


Conclusion

• Practice makes perfect


• There are still **PLENTY** of bugs to be found 


• Keep notes!


• Now it's time to review some code!
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Hands-On 🫶
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• One application written in both Golang and PHP:


• PHP: https://github.com/PentesterLab/codereview-php


• Golang: https://github.com/PentesterLab/codereview-golang


• A lot of vulnerabilities...



Hands-On 🫶: Code Review!
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