
$ git clone https://github.com/PentesterLab/codereview-php

1

$ git clone https://github.com/PentesterLab/codereview-golang

Before we start:

https://github.com/snyff/Talks/blob/master/Intro_Code_Review_Owasp_BA.pdf

https://github.com/PentesterLab/codereview-php
https://github.com/PentesterLab/codereview-golang
https://github.com/snyff/Talks/blob/master/Intro_Code_Review_Owasp_BA.pdf

Louis Nyffenegger 
louis@pentesterlab.com

Web Security
Code Review Workshop

mailto:louis@pentesterlab.com

•Founder and CEO of PentesterLab

•Ex: Pentester, Code Reviewer, AppSec Engineer

ABOUT ME:

•Online Platform to Learn Code Review and Web Hacking /
Web Penetration Testing

•Online Live Training Sessions on Web Security Code Review

This WorkShop

• Introduction

• Routing

• Patterns

5

• CVE Analysis

• CVE-2008-1930

• Conclusion

• Hands-On Code Review

INTRODUCTION🚀
6

Security Code Review is in demand

• Ability to find complex bugs
• Ability to find bugs that scanners can't find
• Ability to review changes prior to deployment (Agile, AppSec)
• Ability to find new classes of vulnerabilities

• Powerful skill for:
• Developers
• Penetration Testers
• Security Engineers
• Vulnerability Researchers / Exploit writers
• QA/Test Engineer

7

Expectations…

8

Reality…

9

Security Code Review...

10

📂
Tooling  

(SAST, Grep, AI, ...)

Source  
Code

✅ XSS 
❌ SQL Injection 
☐.... 
☐.... 
☐.... 
☐.... 
☐.... 
☐.... 
☐....

☐.... 
☐.... 
☐.... 
☐.... 
☐.... 
☐.... 
☐.... 
☐.... 
☐....

⚙ 🕵😭

11

12

📂
Source  
Code

✅ XSS 
☐.... 
☐.... 
☐.... 
☐.... 
☐.... 
☐.... 
☐....

Patterns,  
Weaknesses, 
Vulnerabilities  

...
🕵

Tooling  
(SAST, Grep, AI, ...)

⚙😊

One of the main advantages of this approach is that it
helps identify “unknown unknowns”—issues that

automated tools may overlook.

Security Code Review...

✅ XSS 
☐....

Should you know the language?

A good rule of thumb is that you need to know
things that developers don't know:
• Something about a format used?
• A way to bypass a filter?
• Something about threat modelling?
• Something about the language?

The more things you know that the developers
don't, the more likely you are to find vulnerabilities

13

Should you know how to write code?

• It definitely helps!

• You don't need to be a "real" developer but knowing how
applications are developed will speed up your work

• The more code you write, the more likely you are to guess:
• What mistakes developers will make?
• What shortcuts developers will take?

• The less you know, the more patient you will have to be

14

Threat modeling

• Key component of code review

• If you don't know what can go wrong, you don't
know what to check for

• Knowing about common bug classes for each type
of feature or application is key

• Threat modeling gives "direction" to your review

15

Threat modeling: How to learn?

• There are many methodologies for threat modeling

• For web security code reviews, your best options
are to:

• Read pentest reports
• Read bug bounty findings and write-ups
• Follow research presented at conferences
• Analyze CVE

16

Picking your
targets to

learn...

17

Picking your targets to learn...

• You need to find targets that are not too easy
• You need to find targets that are not too hard

• You need to find targets that allow you to
grow

• You need to find targets to build resilience

18

Picking your targets to learn...
1. Snippets

2. Diff from known/public vulnerabilities/CVE

3. Small or simple Libraries

4. Bigger or more complex Libraries

5. Small Applications

6. Larger Applications

7. Hard Targets

19

Defining Success in Security Code Review

• You don't want to base your success based on the number of
vulnerabilities you find or the impact of the vulnerabilities you find
(especially when learning)

• Success should be based on:
• Your progression in understanding a codebase
• Learning ways a check or filter is implemented
• Finding small weaknesses or potential improvements
• Understanding complex patterns
• Discovering new patterns (with and without security implications)

20

READING CODE

"An hour of code reading can
save you a minute of reading the

documentation"

🤓

21

READING THE CODE
Notice:
• Things that are unusual
• When people reinvent the wheel
• Sketchy code
• Complexity
• Unchecked return values
• Checks:

• What are they trying to prevent?
• Are they preventing it properly?
• Is there something else they should take care of but

they don't?

🤓

22

Reading code

• Every time you encounter a new function or
method:

• Read the documentation
• Look for potential security improvements

and issues
• "Fuzz" it (REPL or docker)
• Keep notes

23

*Bonus point for doing this over multiple
versions of the same method/function...

Routing 🛣

Routing?

How an application maps:

https://...../foo/1234/bar to actual code...

• And what is the impact on

• What you need to review?

• How you will perform your review?

• Multiple ways to define routing: FS, programmatically, configuration

25

https://...../foo/1234/bar

File System based

• Very common with (old, small, pure, immature) applications (mainly PHP)

• Accessing /index.php is mapped to running the code in the file [WEBROOT]/
index.php

• Any file in the web root can potentially be accessed.

• The file's extension or the file's location will decide if the file gets:

• interpreted/executed: the result of the execution is returned to the client.

• served: the content of the file is returned to the client.

26

Programmatically defined

• Code is used to map a
route to code

27

PATTERNS...

28

Patterns

• A lot of issues in security are completely
independent of the programming language

• In this section, we are going to explore patterns
with implementation in multiple programming
languages

• Make sure you focus on the pattern

When the sage points at the moon, the fool looks at the finger.

29

Filter -> Modify -> Use

• The code does three things:

1. Filters for malicious values

2. Modifies the value

3. Uses the value

30

CAN WE REINTRODUCE SOME
OF THE FILTERED VALUES BACK

USING THE MODIFICATION?

Filter -> Modify -> Use

31

Filter -> Modify -> Use

1

32

Filter -> Modify -> Use

2

1

33

Filter -> Modify -> Use

2

1

hack.jsp#34

Filter -> Modify -> Use

35

Filter -> Modify -> Use

Filter

36

Filter -> Modify -> Use

Modify!

37

Filter -> Modify -> Use

The modification may
reintroduce things the code
filtered...

38

Filter -> Modify -> Use

Normalize then filter/escape

39

Matching is hard
Ends with, contains, starts with...

• When matching strings without using a Regular Expression, a lot of people
get confused on what they are trying to achieve.

• "ends with", "contains", "starts with" may feel like they work similarly for the
happy path but they rarely do in reality.

40

Matching is hard
Ends with, contains, starts with...

41

Matching is hard
Ends with, contains, starts with...

louis@libcurl.so.pentesterlab.com

42

mailto:louis@libcurl.so.pentesterlab.com

Ends with, contains, starts with...

43

Not matching the correct value...

Ends with, contains, starts with...

44

Not matching the correct value...

Ends with, contains, starts with...
Not matching the correct value...

45 r.URL.String() vs r.URL.Path

Reinventing the wheel!

• Never a good idea (always a bad idea when dealing with crypto)

• For most common operations, programming languages provide built-in functions or methods,
such as:

• String manipulations: uppercase, lowercase, split, cut

• File manipulations: getting the file extension from a filename, extracting the filename from a
path, etc.

• When developers write their own versions, they’re likely to overlook odd edge cases that the
built-in functions already handle

• Compare the built-in source code with the code written by the developers!

46

Play Session Injection

47

🚩 They are
reinventing a
serialiser

Play Session Injection

48

Play Session Injection

49

Session: {"key1": "value1", "key2": "value2"}

becomes "\x00key1:value1\x00\x00key2:value2\x00"

Play Session Injection

50

Session: {"username": "louis", "email": "louis@pentesterlab.com"}

becomes "\x00username:louis\x00\x00email:louis@pentesterlab.com\x00"

Play Session Injection

51

They loop
through the
elements in the
session

Play Session Injection

52

They loop through
the elements in the
session

Play Session Injection

53

"\x00key1:value1\x00\x00key2:value2\x00" becomes:

 "\x00key1:value1\x00" => session.put("key1" , "value1")

"\x00key2:value2\x00" => session.put("key2" , "value2")

Play Session Injection

54

🚩
No checks to
prevent separators
(':' or NULL BYTE) in
the value

Play Session Injection

55

As a client, we most
likely only have
access to the value.

Play Session Injection

56

Play Session Injection

57 username=[USER-CONTROLLED]

Play Session Injection

58
username=louis

Play Session Injection

59
username=louis => session.put("username", "louis")

Play Session Injection

60
username=louis => session.put("username", "louis")
=> "\x00username:louis\x00"

Play Session Injection

61
username=louis\x00\x00username:admin

Play Session Injection

62

username=louis\x00\x00username:admin
=> session.put("username", "louis\x00\x00username:admin")

Play Session Injection

63

username=louis\x00\x00username:admin
=> session.put("username", "louis\x00\x00username:admin")

=> \x00username:louis\x00\x00username:admin\x00

Play Session Injection

64

username=louis\x00\x00username:admin
=> session.put("username", "louis\x00\x00username:admin")

=> \x00username:louis\x00\x00username:admin\x00

They loop through
the elements in the
session

Play Session Injection

65

\x00username:louis\x00\x00username:admin\x00 becomes

 "\x00username:louis\x00" => session.put("username" , "louis")

"\x00username:admin\x00" => session.put("username" , "admin")

They loop through
the elements in the
session

Play Session Injection

66

\x00username:louis\x00\x00username:admin\x00 becomes

 "\x00username:louis\x00" => session.put("username" , "louis")

"\x00username:admin\x00" => session.put("username" , "admin") (OVERWRITE)

CVE
ANALYSIS

67

Why?

• Deliberate practice

• Learning new patterns

• Learning how to fix issues

• Find incomplete patches

68

Analysing CVE (Code Review)

• Read the advisory!

• Clone the repository

• Find the tag for the vulnerable and fixed versions

• Extract a patch/diff

• Analyse the patch/diff:

• What does the vulnerable code look like?

• What does the fix look like?

• Is this properly fixed?

• More vulnerabilities in the same area?

69

6 digits

5 digits
26%

4 digits
36%

3 digits
23%

2 digits
Expectations vs Reality

575 CVEs (diff based on
vulnerable version versus
patched version):

70

[VULNERABLE] 👩💻 🪲 [PATCHED]

[VULNERABLE] 👩💻 🪲 👩💻 [PATCHED]

[VULNERABLE] 👩💻 🧑💻 🪲 👨💻 [PATCHED]

[VULNERABLE] 👩💻 🧑💻 🪲 👨💻👩💻 [PATCHED]

[VULNERABLE] 👩💻 🧑💻 🪲 👨💻👩💻🧑💻 [PATCHED]

Expectations vs Reality

71

Methodology

Analysing CVE (Code Review)

73

https://github.com/zeromicro/go-zero/security/advisories/GHSA-fgxv-gw55-r5fq

Analysing CVE (Code Review)

74

https://github.com/zeromicro/go-zero/security/advisories/GHSA-fgxv-gw55-r5fq

Analysing CVE (Code Review)

75

https://github.com/zeromicro/go-zero/security/advisories/GHSA-fgxv-gw55-r5fq

Analysing CVE (Code Review)

76

https://github.com/zeromicro/go-zero/security/advisories/GHSA-fgxv-gw55-r5fq

Analysing CVE (Code Review)

77

https://github.com/zeromicro/go-zero/security/advisories/GHSA-fgxv-gw55-r5fq

Analysing CVE (Code Review)

78

https://github.com/zeromicro/go-zero/security/advisories/GHSA-fgxv-gw55-r5fq

79

80

They wanted to allow
an origin and all
subdomains of the
origin...

81

They actually allowed all
hostnames ending with
the origin

82

pentesterlab.com ->
hackedbypentesterlab.com

They actually allowed all
hostnames ending with
the origin

http://pentesterlab.com
http://hackedbypentesterlab.com

Analysing CVE (Code Review)

83

Analysing CVE (Code Review)

84

CVE-2008-1930

admin1

admin:1353464343:16849b89783b5918a41bbd29a3c4bbf6

admin

1353464343

16849b89783b5918a41bbd29a3c4bbf6

hmac(admin1353464343)

admin1

admin1:1353464343:1ba7d82099dd6119781b54ecf8b79259

admin1

1353464343

1ba7d82099dd6119781b54ecf8b79259

hmac(admin11353464343)

admin1

admin:11353464343:1ba7d82099dd6119781b54ecf8b79259

admin

11353464343

1ba7d82099dd6119781b54ecf8b79259

admin1:1353464343:1ba7d82099dd6119781b54ecf8b79259

hmac(admin11353464343)
hmac(admin11353464343)

The Fix

98

Lesson learned:
Always include a delimiter between values

when signing data.

CONCLUSI🧐N

99

Assumptions!
Developers, yours, ...

100

101

“All important targets require
substantial initial investments

before discovering and
consistently discovering

vulnerabilities.”
- Silvio Cesare

102

103

Keeping in touch

104

https://pentesterlab.com/

https://pentesterlab.com/live-training/

@pentesterlab.com and @snyff.pentesterlab.com

https://www.linkedin.com/company/pentesterlab/

https://www.linkedin.com/in/snyff/

@PentesterLab and @snyff

louis@pentesterlab.com

https://pentesterlab.com/
https://pentesterlab.com/live-training/
http://pentesterlab.com
http://snyff.pentesterlab.com
http://pentesterlab.com

Conclusion

• Practice makes perfect

• There are still **PLENTY** of bugs to be found

• Keep notes!

• Now it's time to review some code!

105

Hands-On 🫶

106

• One application written in both Golang and PHP:

• PHP: https://github.com/PentesterLab/codereview-php

• Golang: https://github.com/PentesterLab/codereview-golang

• A lot of vulnerabilities...

Hands-On 🫶: Code Review!

107

