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What is OWASP?
Open Web Application Security Project (OWASP) is a 
nonprofit foundation that works to improve the security of 
software.

● A website: owasp.org
● A bunch of cool tools: Zed Attack Proxy, Juice Shop, Proactive 

Controls, Software Assurance Maturity Model (SAMM), 
Application Security Verification Standard (ASVS)

● A global community of like-minded people, meetups and 
conferences







OWASP Top Ten
Globally recognized by developers as the first step towards 
more secure coding.

The most critical security risks to web applications.

Updated every 2-3 years from 2003 to 2017 
(2020 is in progress)
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OWASP Top Ten 2017
A1 Injection
A2 Broken Authentication
A3 Sensitive Data Exposure
A4 XML External Entities (XXE)
A5 Broken Access Control
A6 Security Misconfiguration
A7 Cross-Site Scripting (XSS)
A8  Insecure Deserialization
A9 Using Components with Known Vulnerabilities
A10 Insufficient Logging & Monitoring



A1 Injection
Sending hostile data to an interpreter
(e.g. SQL, LDAP, command line)
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A1 Injection
Sending hostile data to an interpreter
(e.g. SQL, LDAP, command line)

String query = "SELECT * FROM accounts WHERE

custID='" + request.getParameter("id") + "'";

id = " '; drop table accounts -- "

SQL statements combine code and data
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SQLi Demo



A1 Injection
Prevention:

SQL statements combine code and data

=> Separate code and data

● Parameterise your queries
● Validate which data can be entered
● Escape special characters
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A2 Broken Authentication
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A2 Broken Authentication
● Weak session management
● Credential stuffing
● Brute force
● Forgotten password
● No multi-factor authentication
● Sessions don’t expire
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A2 Broken Authentication
Prevention:

● Use good authentication libraries
● Use MFA
● Enforce strong passwords
● Detect and prevent brute force 

or stuffing attacks



A3 Sensitive Data Exposure
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A3 Sensitive Data Exposure
● Clear-text data transfer
● Unencrypted storage
● Weak crypto or keys
● Certificates not validated
● Exposing PII or Credit Cards GET /
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Data Exposure Demo



A3 Sensitive Data Exposure
Prevention:

● Don’t store data unless you 
need to!

● Encrypt at rest and in transit
● Use strong crypto



A4 XML External Entities (XXE)
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A4 XML External Entities (XXE)
The application accepts XML, and 
assumes it is safe

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<foo>&xxe;</foo>

Can allow accessing sensitive resources, 
command execution, recon, or cause 
denial of service. 
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XXE Demo



A4 XML External Entities (XXE)
Prevention:

● Avoid XML
● Use modern libraries, and 

configure them well!
● Validate XML



A5 Broken Access Control
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A5 Broken Access Control
● Access hidden pages

http://site.com/admin/user-management

● Elevate to an administrative account
● View other people’s data

http://site.com/user?id=7

● Modifying cookies or JWT tokens
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A5 Broken Access Control
Prevention:

● Use proven code or libraries
● Deny access by default
● Log failures and alert
● Rate limit access to resources



A6 Security Misconfiguration
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A6 Security Misconfiguration
● Security features not configured 

properly
● Unnecessary features enabled
● Default accounts not removed
● Error messages expose sensitive 

information
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A6 Security Misconfiguration
Prevention:

● Have a repeatable build process 
or “gold master”

● Disable all unused services
● Use tools to review settings



A7 Cross-Site Scripting (XSS)
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A7 Cross-Site Scripting (XSS)
HTML mixes content, presentation and 
code into one string (HTML+CSS+JS)

If an attacker can alter the DOM, they 
can do anything that the user can do.

XSS can be found using automated 
tools.
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XSS Demo



A7 Cross-Site Scripting (XSS)
Prevention:

● Encode all user-supplied data to render it safe
Kirk <script> => Kirk &lt;script&gt;

● Use appropriate encoding for the context
● Use templating frameworks that assemble HTML safely
● Use Content Security Policy



A8  Insecure Deserialization
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A8  Insecure Deserialization
Programming languages allow you to 
turn a tree of objects into a string that can 
be sent to the browser.

If you deserialise untrusted data, you 
may allow objects to be created, or code 
to be executed.
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Deserialisation Demo



A8  Insecure Deserialization
Prevention:

● Avoid serialising and deserialising objects
● Use signatures to detect tampering
● Configure your library safely
● Check out the OWASP Deserialisation Cheat Sheet



A9 Using Components with Known Vulnerabilities
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A9 Using Components with Known Vulnerabilities
Modern applications contain a lot of 
third-party code.

It’s hard to keep it all up to date.

Attackers can enumerate the 
libraries you use, and develop 
exploits.



A9 Using Components with Known Vulnerabilities
Prevention:

● Reduce dependencies
● Patch management
● Scan for out-of-date 

components
● Budget for ongoing maintenance 

for all software projects



A10 Insufficient Logging & Monitoring
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A10 Insufficient Logging & Monitoring
You can’t react to attacks that you don’t 
know about.

Logs are important for:

● Detecting incidents
● Understanding what happened
● Proving who did something
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OWASP Top Ten 2017
A1 Injection
A2 Broken Authentication
A3 Sensitive Data Exposure
A4 XML External Entities (XXE)
A5 Broken Access Control
A6 Security Misconfiguration
A7 Cross-Site Scripting (XSS)
A8  Insecure Deserialization
A9 Using Components with Known Vulnerabilities
A10 Insufficient Logging & Monitoring



Next Steps



Next Steps
● Attend OWASP events
● Search for OWASP Top Ten category names and your 

framework
E.g. “C# XSS protection”

● Watch youtube or Pluralsight videos
● Use the terms when discussing bugs with colleagues
● Keep track of which issues affect you the most
● Go beyond the Top Ten
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