Introduction to the

OWASP Top Ten

Kirk Jackson OWASP NZ
RedShield https://www.meetup.com/
kirk@pageofwords.com OWASP-Wellington/
http://hack-ed.com Recordings: Www.owasp.org.nz

@Kirk] https://goo.gl/a2VSG2 @owaspnz

http://hack-ed.com
http://twitter.com/kirkj
https://www.meetup.com/OWASP-Wellington/
https://www.meetup.com/OWASP-Wellington/
http://www.owasp.org.nz
http://twitter.com/owaspnz
https://goo.gl/a2VSG2

What is OWASP?

Open Web Application Security Project (OWASP) is a
nonprofit foundation that works to improve the security of
software.

e A website: owasp.org

e A bunch of cool tools: Zed Attack Proxy, Juice Shop, Proactive
Controls, Software Assurance Maturity Model (SAMM),
Application Security Verification Standard (ASVS)

e A global community of like-minded people, meetups and
conferences

@DUJFISDM PROJECTS CHAPTERS EVENTS ABOUT Search OWASP.org

Who is the OWASP Foundation?

The Open Web Application Security Project (OWASP) is a nonprofit foundation
that works to improve the security of software. Through community-led open
source software projects, hundreds of local chapters worldwide, tens of
thousands of members, and leading educational and training conferences, the
OWASP Foundation is the source for developers and technologists to secure
the web.

 Tools and Resources
o Community and Networking
o Education & Training

For nearly two decades corporations, foundations, developers, and volunteers
have supported the OWASP Foundation and its work. Donate, Join, or become
a Corporate Member today.

Project Spotlight: Zed Attack Proxy Featured Chapter: Bay Area

Introducing the
OWASP ZAP HUD

Simon Bennatts Ppsiinon
ZAP Project Leacer
Mazilla Firefox Operal yTeam

@OLUF]SDN PROJECTS CHAPTERS EVENTS ABOUT

OWASP Top Ten

==

The OWASP Top 10 is a standard awareness document for developers and web application security. It
represents a broad consensus about the most critical security risks to web applications.

Globally recognized by developers as the first step towards
more secure coding.

Companies should adopt this document and start the process of ensuring that their web applications minimize
these risks. Using the OWASP Top 10 is perhaps the most effective first step towards changing the software
development culture within your organization into one that produces more secure code.

Top 10 Web Application Security Risks

1. Injection. Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when untrusted data is
sent to an interpreter as part of a command or query. The attacker’s hostile data can trick the interpreter
into executing unintended commands or accessing data without proper authorization.

2. Broken Authentication. Application functions related to authentication and session management are often
implemented incorrectly, allowing attackers to compromise passwords, keys, or session tokens, or to
exploit other implementation flaws to assume other users’ identities temporarily or permanently.

3. Sensitive Data Exposure. Many web applications and APIls do not properly protect sensitive data, such as

Search OWASP.org Donate

® Watch 18 Y Star = 32

The OWASP Foundation works to
improve the security of software through its
community-led open source software
projects, hundreds of chapters worldwide,
tens of thousands of members, and by
hosting local and global conferences.

Project Information

[Flagship Project
E Documentation
& Builder

© Defender
Current Version (2017)

Downloads or Social Links

Download
Social Link

Code Repository
repo

Leaders

Gt

OWASP Top Ten

Globally recognized by developers as the first step towards
more secure coding.

The most critical security risks to web applications.

Updated every 2-3 years from 2003 to 2017
(2020 is in progress)

Securing the user

sitea.com
———-

Web Browser

GET/

Web Server

OWASP Top Ten 2017

A1 Injection

A2 Broken Authentication

A3 Sensitive Data Exposure

A4 XML External Entities (XXE)

AS Broken Access Control

A6 Security Misconfiguration

A7 Cross-Site Scripting (XSS)

A8 Insecure Deserialization

A9 Using Components with Known Vulnerabilities
A10 Insufficient Logging & Monitoring

A1 Injection

Sending hostile data to an interpreter
(e.g. SQL, LDAP, command line)

— = = e e e e e = = = = = I
|
Web Browser 'l web Server X :
I
. - L) l
sitea.com | ESUCE GET/ : Site A :
— | Y | Y :
+ JS I ~— :

A1 Injection

Sending hostile data to an interpreter
(e.g. SQL, LDAP, command line)

|
String query = "SELECT * FROM accounts WHERE : |
mrn ms n miin Web Server x I
custID="" + request.getParameter("id") + ;1 :
I S —
Site A B |
id = " '; drop table accounts -- " : ——’ v |
|
I S —
|

SQL statements combine code and data

SQLi Demo

A1 Injection
Prevention:

SQL statements combine code and data

=> Separate code and data Veb Server

|
I
: X
oo - B
e Parameterise your queries | %
- - I ~—’
e Validate which data can be entered @ ----------: - -
e Escape special characters

A2 Broken Authentication

sitea.com
———-

Web Browser

Site A

GET/

DOM
+JS

Web Server

X
S —

Y
S —

A2

Broken Authentication

Weak session management
Credential stuffing

Brute force

Forgotten password

No multi-factor authentication
Sessions don’t expire

Web Server

X
——
Site A RS
Y
——

A2

Broken Authentication

Prevention:

Use good authentication libraries
Use MFA

Enforce strong passwords
Detect and prevent brute force
or stuffing attacks

Downstairs Auditorium (Room 098)
Track Two: Technical

Improving Identity Management with
W3C Verifiable Credentials
David Chadwick - University of Kent

A3 Sensitive Data Exposure

sitea.com
———-

Web Browser

Site A

GET/

DOM
+JS

A3 Sensitive Data Exposure

Clear-text data transfer
Unencrypted storage
Weak crypto or keys ; !
Certificates not validated : x|
Exposing PIl or Credit Cards GET/ i, T |
' .

Data Exposure Demo

A3 Sensitive Data Exposure

Downstairs Auditorium (Room 098)

Track Two: Technical

Prevention:

e Don’t store data unless you
Wyh Ranmdnoses Mattres

n ee d tO ' Frans Lategan - AL'lra Information
Security

e Encrypt at rest and in transit
e Use strong crypto

16:55
A Recipe for Password Storage: Add

Salt to Taste
Nick Malcolm - Aura Information Security

A4 XML External Entities (XXE)

|
Web Browser ' web Server X
|
sitea.com | ESLGCEa GET/ L Sto A —
DOM | Y
+JS | _—

A4 XML External Entities (XXE)

The application accepts XML, and

assumes it is safe

<?xml version="1.0" encoding="IS0-8859-1"?>
<!DOCTYPE foo [

<!ELEMENT foo ANY >

<IENTITY xxe SYSTEM "file:///etc/passwd" >]>
<foo>&xxe;</foo>

Can allow accessing sensitive resources,
command execution, recon, or cause
denial of service.

Web Server

X
—
Site A RS
Y
—

XXE Demo

A4 XML External Entities (XXE)

Prevention:
o AVOId XM L Downstairs Auditorium (Room 098)
. . Track Two: Technical
e Use modern libraries, and
CO nfl g U I’e th e m Wel I ' 14:25 Web App Attacks of the Modern World

Karan Sharma

e Validate XML

A5 Broken Access Control

sitea.com
———-

Web Browser

Site A

GET/

DOM
+JS

Web Server

X
S —

Y
S —

AS

Broken Access Control

Access hidden pages
http://site.com/admin/user-management

Elevate to an administrative account

View other people’s data
http://site.com/user?id=7

Modifying cookies or JWT tokens

r——=—=-—=-=-"-1

Web Server

X
—
Site A RS
Y
—

A5 Broken Access Control

Prevention:

Use proven code or libraries
Deny access by default

Log failures and alert

Rate limit access to resources

A6 Security Misconfiguration

|
Web Browser ' web Server X
|
sitea.com | ESLGCEa GET/ L Sto A —
DOM | Y
+ JS | |)

AG

Security Misconfiguration

Security features not configured
properly

Unnecessary features enabled
Default accounts not removed
Error messages expose sensitive
information

Web Server

X
—
Site A RS
Y
—

A6 Security Misconfiguration
Prevention:

e Have a repeatable build process
or “gold master”

e Disable all unused services

e Use tools to review settings

Downstairs Auditorium (Room 098)
Track Two: Technical

Self-Service SSH Certificates
Jeremy Stott

Al

Cross-Site Scripting (XSS)

sitea.com
———-

Web Browser
Site A

DOM
+JS

GET/

Al Cross-Site Scripting (XSS)

HTML mixes content, presentation and
code into one string (HTML+CSS+JS)

Web Browser

If an attacker can alter the DOM, they Site A

can do anything that the user can do. o

XSS can be found using automated Site B
tools.

XSS Demo

Al Cross-Site Scripting (XSS)

Prevention:

e Encode all user-supplied data to render it safe
Kirk <script> => Kirk <script>
e Use appropriate encoding for the context
e Use templating frameworks that assemble HTML safely

e Use Content Security Policy

A8 Insecure Deserialization

sitea.com
———-

Web Browser

Site A

GET/

DOM
+JS

Web Server

X
S —

Y
S —

A8 Insecure Deserialization

Programming languages allow you to
turn a tree of objects into a string that can
be sent to the browser.

If you deserialise untrusted data, you
may allow objects to be created, or code
to be executed.

r——=—=-—=-=-"-1

Web Server

X
—
Site A RS
Y
—

Deserialisation Demo

A8 Insecure Deserialization

Prevention:

Avoid serialising and deserialising objects

Use signatures to detect tampering

Configure your library safely

Check out the OWASP Deserialisation Cheat Sheet

A9

Using Components with Known Vulnerabilities

sitea.com
———-

Web Browser
Site A

DOM
+JS

GET/

A9 Using Components with Known Vulnerabilities

Modern applications contain a /ot of
third-party code.

It's hard to keep it all up to date.

Attackers can enumerate the
libraries you use, and develop
exploits.

A9 Using Components with Known Vulnerabilities

Prevention:
e Reduce d epe ndencies Downstairs Auditorium (Room 098)
~ Patch management Track Two: Technical
® Sca n for OUt-Of-d ate 11:20 Scanning Your Container Images
using Anchore
com pO nen tS Vince Sesto - Fgodstuffs North Island

e Budget for ongoing maintenance
for all software projects

A10 Insufficient Logging & Monitoring

Web Browser

|
|
| X
sitea.com | EELGCEA e : -
DOM I*" v
+ JS :
Site B \&
SIEM e

A10 Insufficient Logging & Monitoring

You can't react to attacks that you don't
know about.

Logs are important for:

e Detecting incidents
e Understanding what happened
e Proving who did something

OWASP Top Ten 2017

A1 Injection

A2 Broken Authentication

A3 Sensitive Data Exposure

A4 XML External Entities (XXE)

AS Broken Access Control

A6 Security Misconfiguration

A7 Cross-Site Scripting (XSS)

A8 Insecure Deserialization

A9 Using Components with Known Vulnerabilities
A10 Insufficient Logging & Monitoring

Next Steps

Next Steps

e Attend OWASP events

e Search for OWASP Top Ten category names and your
framework

E.g. “"C# XSS protection”

Watch youtube or Pluralsight videos

Use the terms when discussing bugs with colleagues
Keep track of which issues affect you the most

Go beyond the Top Ten

Introduction to the

OWASP Top Ten

Kirk Jackson OWASP NZ
RedShield https://www.meetup.com/
kirk@pageofwords.com OWASP-Wellington/
http://hack-ed.com Recordings: Www.owasp.org.nz

@Kirk] https://goo.gl/a2VSG2 @owaspnz

http://hack-ed.com
http://twitter.com/kirkj
https://www.meetup.com/OWASP-Wellington/
https://www.meetup.com/OWASP-Wellington/
http://www.owasp.org.nz
http://twitter.com/owaspnz
https://goo.gl/a2VSG2

