
Introduction to the
OWASP Top Ten

Kirk Jackson
RedShield
kirk@pageofwords.com
http://hack-ed.com
@kirkj

OWASP NZ
https://www.meetup.com/

OWASP-Wellington/
www.owasp.org.nz

@owaspnz
Recordings:

https://goo.gl/a2VSG2

http://hack-ed.com
http://twitter.com/kirkj
https://www.meetup.com/OWASP-Wellington/
https://www.meetup.com/OWASP-Wellington/
http://www.owasp.org.nz
http://twitter.com/owaspnz
https://goo.gl/a2VSG2

What is OWASP?
Open Web Application Security Project (OWASP) is a
nonprofit foundation that works to improve the security of
software.

● A website: owasp.org
● A bunch of cool tools: Zed Attack Proxy, Juice Shop, Proactive

Controls, Software Assurance Maturity Model (SAMM),
Application Security Verification Standard (ASVS)

● A global community of like-minded people, meetups and
conferences

OWASP Top Ten
Globally recognized by developers as the first step towards
more secure coding.

The most critical security risks to web applications.

Updated every 2-3 years from 2003 to 2017
(2020 is in progress)

Securing the user

Web Server

Site A

Web Browser

sitea.com GET /

X

Y

Site A

Site B

DOM
+ JS

OWASP Top Ten 2017
A1 Injection
A2 Broken Authentication
A3 Sensitive Data Exposure
A4 XML External Entities (XXE)
A5 Broken Access Control
A6 Security Misconfiguration
A7 Cross-Site Scripting (XSS)
A8 Insecure Deserialization
A9 Using Components with Known Vulnerabilities
A10 Insufficient Logging & Monitoring

A1 Injection
Sending hostile data to an interpreter
(e.g. SQL, LDAP, command line)

Web Server

Site A

Web Browser

sitea.com GET /

X

Y

Site A

Site B

DOM
+ JS

A1 Injection
Sending hostile data to an interpreter
(e.g. SQL, LDAP, command line)

String query = "SELECT * FROM accounts WHERE

custID='" + request.getParameter("id") + "'";

id = " '; drop table accounts -- "

SQL statements combine code and data

Web Server

Site A

X

Y
query

SQLi Demo

A1 Injection
Prevention:

SQL statements combine code and data

=> Separate code and data

● Parameterise your queries
● Validate which data can be entered
● Escape special characters

Web Server

Site A

X

Y
query

A2 Broken Authentication

Web Server

Site A

Web Browser

sitea.com GET /

X

Y

Site A

Site B

DOM
+ JS

A2 Broken Authentication
● Weak session management
● Credential stuffing
● Brute force
● Forgotten password
● No multi-factor authentication
● Sessions don’t expire

Web Server

Site A

X

Y
query

A2 Broken Authentication
Prevention:

● Use good authentication libraries
● Use MFA
● Enforce strong passwords
● Detect and prevent brute force

or stuffing attacks

A3 Sensitive Data Exposure

Web Server

Site A

Web Browser

sitea.com GET /

X

Y

Site A

Site B

DOM
+ JS

A3 Sensitive Data Exposure
● Clear-text data transfer
● Unencrypted storage
● Weak crypto or keys
● Certificates not validated
● Exposing PII or Credit Cards GET /

Web Server

Site A

X

Y

Data Exposure Demo

A3 Sensitive Data Exposure
Prevention:

● Don’t store data unless you
need to!

● Encrypt at rest and in transit
● Use strong crypto

A4 XML External Entities (XXE)

Web Server

Site A

Web Browser

sitea.com GET /

X

Y

Site A

Site B

DOM
+ JS

A4 XML External Entities (XXE)
The application accepts XML, and
assumes it is safe

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<foo>&xxe;</foo>

Can allow accessing sensitive resources,
command execution, recon, or cause
denial of service.

Web Server

Site A

X

Y
query

XXE Demo

A4 XML External Entities (XXE)
Prevention:

● Avoid XML
● Use modern libraries, and

configure them well!
● Validate XML

A5 Broken Access Control

Web Server

Site A

Web Browser

sitea.com GET /

X

Y

Site A

Site B

DOM
+ JS

A5 Broken Access Control
● Access hidden pages

http://site.com/admin/user-management

● Elevate to an administrative account
● View other people’s data

http://site.com/user?id=7

● Modifying cookies or JWT tokens

Web Server

Site A

X

Y
query

A5 Broken Access Control
Prevention:

● Use proven code or libraries
● Deny access by default
● Log failures and alert
● Rate limit access to resources

A6 Security Misconfiguration

Web Server

Site A

Web Browser

sitea.com GET /

X

Y

Site A

Site B

DOM
+ JS

A6 Security Misconfiguration
● Security features not configured

properly
● Unnecessary features enabled
● Default accounts not removed
● Error messages expose sensitive

information

Web Server

Site A

X

Y
query

A6 Security Misconfiguration
Prevention:

● Have a repeatable build process
or “gold master”

● Disable all unused services
● Use tools to review settings

A7 Cross-Site Scripting (XSS)

Web Server

Site A

Web Browser

sitea.com GET /

X

Y

Site A

Site B

DOM
+ JS

A7 Cross-Site Scripting (XSS)
HTML mixes content, presentation and
code into one string (HTML+CSS+JS)

If an attacker can alter the DOM, they
can do anything that the user can do.

XSS can be found using automated
tools.

Web Browser

Site A

Site B

DOM
+ JS

XSS Demo

A7 Cross-Site Scripting (XSS)
Prevention:

● Encode all user-supplied data to render it safe
Kirk <script> => Kirk <script>

● Use appropriate encoding for the context
● Use templating frameworks that assemble HTML safely
● Use Content Security Policy

A8 Insecure Deserialization

Web Server

Site A

Web Browser

sitea.com GET /

X

Y

Site A

Site B

DOM
+ JS

A8 Insecure Deserialization
Programming languages allow you to
turn a tree of objects into a string that can
be sent to the browser.

If you deserialise untrusted data, you
may allow objects to be created, or code
to be executed.

Web Server

Site A

X

Y
query

Deserialisation Demo

A8 Insecure Deserialization
Prevention:

● Avoid serialising and deserialising objects
● Use signatures to detect tampering
● Configure your library safely
● Check out the OWASP Deserialisation Cheat Sheet

A9 Using Components with Known Vulnerabilities

Web Server

Site A

Web Browser

sitea.com GET /

X

Y

Site A

Site B

DOM
+ JS

A9 Using Components with Known Vulnerabilities
Modern applications contain a lot of
third-party code.

It’s hard to keep it all up to date.

Attackers can enumerate the
libraries you use, and develop
exploits.

A9 Using Components with Known Vulnerabilities
Prevention:

● Reduce dependencies
● Patch management
● Scan for out-of-date

components
● Budget for ongoing maintenance

for all software projects

A10 Insufficient Logging & Monitoring

Web Server

Site A

Web Browser

sitea.com GET /

X

Y

Site A

Site B

DOM
+ JS

SIEM

A10 Insufficient Logging & Monitoring
You can’t react to attacks that you don’t
know about.

Logs are important for:

● Detecting incidents
● Understanding what happened
● Proving who did something

Web Server

Site A

X

Y

SIEM

OWASP Top Ten 2017
A1 Injection
A2 Broken Authentication
A3 Sensitive Data Exposure
A4 XML External Entities (XXE)
A5 Broken Access Control
A6 Security Misconfiguration
A7 Cross-Site Scripting (XSS)
A8 Insecure Deserialization
A9 Using Components with Known Vulnerabilities
A10 Insufficient Logging & Monitoring

Next Steps

Next Steps
● Attend OWASP events
● Search for OWASP Top Ten category names and your

framework
E.g. “C# XSS protection”

● Watch youtube or Pluralsight videos
● Use the terms when discussing bugs with colleagues
● Keep track of which issues affect you the most
● Go beyond the Top Ten

Introduction to the
OWASP Top Ten

Kirk Jackson
RedShield
kirk@pageofwords.com
http://hack-ed.com
@kirkj

OWASP NZ
https://www.meetup.com/

OWASP-Wellington/
www.owasp.org.nz

@owaspnz
Recordings:

https://goo.gl/a2VSG2

http://hack-ed.com
http://twitter.com/kirkj
https://www.meetup.com/OWASP-Wellington/
https://www.meetup.com/OWASP-Wellington/
http://www.owasp.org.nz
http://twitter.com/owaspnz
https://goo.gl/a2VSG2

