
Supercharging the
SOC Tier 1 with AI

Large Language
Threat Detection

Michael Lamb - Director of Security Operations Precursor
Security & SANS Instructor Candidate (LDR551)

Large Language Threat Detection

Large Language Threat Detection

The Current State of SOC

Large Language Threat Detection

Agentic AI is the new SOAR

SOAR is obselete before market
plateau
AI SOC Agents are in an innovation
trigger with 5-10 years before
plateau

Summarising alerts & incidents

Generating queries for investigations

Copilots/Bots

Analysing (un)structured data

Alert correlation

Performing Tier 1 Activities on low-fidelity alerts ✅

SOC AI Ideas

Large Language Threat Detection

Diagnostic Inquiry

Large Language Threat Detection

“Analysts asked relevant questions when they based them on the interpretation of existing evidence within
the current investigation or other investigations involving similar components and techniques.” - The

Analyst Mindset: A Cognitive Skills Assessment of Digital Forensic Analysts Chris Sanders, Ed.D.

Observation

Question

Answer Hypotheses

Conclusion

Receive and
structure initial

alert

Reason, enrich,
contextualise,

identify
hypotheses/reasons.
Generate questions

to aid reaching a
verdict

Question 1

Question 2

Question 3

Question 4

Question 5

Perform Final
Analysis

Send to SOC

Obtain Strategise & Plan Collect Analyse Report

Query 1

Query 2

Query 3

Query 4

Query 5

Merge &
Summarise

Findings

OSCAR

Large Language Threat Detection

Source: Dropzone, Why SOCs Rely on OSCAR: A Proven Investigative Framework

TOIL SOC Mapping

Reducing TOIL in SOC

Large Language Threat Detection

Manual

Repetitive

Analysts manually investigate similar alerts (e.g., false
positives, benign behavior).

High volume of similar alerts (e.g., failed logins, known
scanning activity).

Many steps (e.g., enrichment, triage, correlation) can be
automated or semi-automated.

Automatable

Reactive
Analysts respond to alerts after they fire — no proactive
value added unless feedback loops exist.

Google SRE - Operational Efficiency: Eliminating Toil

What I’ve Tried

Large Language Threat Detection

HP DL380 server w/ NVIDIA GPU & DeepSeek (self-hosted)

N8N Local Server

CrewAI

Langchain

Demos with other vendors

What’s Working
Azure Open AI (GPT-4o) + N8N Cloud

Large Language Threat Detection

The Flow

Large Language Threat Detection

The Result
User Consent Denied for OAuth Application

🔍 Investigative Question
What is the name, application ID, and registered owner of the OAuth application that requested

consent?
🧠 Investigative Rationale

Identifying the app and its creators helps determine whether it's a known benign application or could
be associated with an attacker. Many malicious apps have names that mimic reputable services. This

question helps attribute the activity for further investigation.

AuditLogs
| where OperationName has "Consent to application"

| where Result == "failure"
| extend AppName = tostring(TargetResources[0].displayName),

 AppId = tostring(TargetResources[0].id),
 RegisteredOwner = tostring(InitiatedBy.user.userPrincipalName)

| project TimeGenerated, AppName, AppId, RegisteredOwner

Large Language Threat Detection

Other Questions
User Consent Denied for OAuth Application

From which IP address and geographic location was the OAuth
consent request initiated?

Did the user receive prior login or unusual activity requests from
the same IP or location within the last 24 hours?

Were there any subsequent user actions, such as elevated
privileges or application usage, following the denied consent

event?

Were there any other OAuth consent requests (approved or
denied) involving the same user or app across the organization in

the last 7 days?

Large Language Threat Detection

Example Output & Cost Breakdown

8,896

2,390

Input Prompt

Output

£0.0336Estimate

Daily estimate of ~£3 per day based on 80 similar alerts everyday

Large Language Threat Detection

KQL Bench
Comprehensive AI evaluation framework testing large language models' ability to generate

cybersecurity detection rules using real-world attack scenarios

Provide known-good examples in the prompt (Few-Shot Prompts)

Provide tips/guidelines/principles clearly

Handle errors/common mistakes with a seperate agent

Avoid repeating points throughout prompts

Connect knowledge sources (RAG) - See vectorize.io

Use the ‘Pause & Wait for Human Response’

Use prompt files (like .prompty) to manage prompt development and testing

Use ReACT for reasoning traces

Connect ‘Tools’/MCP Servers to perform additional lookups and add context

Use a good model (honourable mention: kqlbench.com)

Tips for Success

Large Language Threat Detection

SOC AI Workflow Maturity

Large Language Threat Detection

Level Description Capabilities Limitations

L0 — Basic Prompting
Copy-paste questions into
ChatGPT or Copilot

- Answers basic KQL or incident
triage questions- No schema
knowledge

- Hallucinates fields
- Wrong syntax
- No memory

L1 — Prompt-Only Agent
Uses static system prompt via
Azure OpenAI

- Uses KQL-only scaffold
- Can generate valid queries
- Can call SIEM API

- No awareness of tenant schema
- No learning from feedback

L2 — Schema-Grounded +
Memory

Adds RAG or hardcoded schema +
stores query feedback

- Picks correct tables/fields
- Avoids SQL syntax
- Learns from corrections
- Feedback loop improves future
responses

- Needs schema updates as data
sources change
- Needs retrieval tuning

L3 — Autonomous Workflow
+ Evaluation

Fully integrated with query
execution, correction, and scoring

- Generates query
- Executes it
- Corrects and retries
- Scores quality
- Learns from outcomes

- Higher complexity
- Requires state/memory
- Needs cost control (API usage,
retries)

Thank You
Questions
GitHub/Twitter(X): @mikecybersec

