
API Security

Erez Yalon

OWASP Singapore | 13 July 2021

@ErezYalon

www.checkmarx.com

/

Question: What do all this logos have in common?

Who am I?

Erez Yalon, Head of Security Research, Checkmarx
• Previous independent security researcher and developer
• Better at breaking than building
• Responsible for maintaining Checkmarx’s top notch vulnerability

detection technology
• Lead several OWASP projects including the API Security and CN Projects
• Founder of AppSec Village in DEF CON

What is an API?

“An application programming interface
(API) is an interface or communication
protocol between a client and a server
intended to simplify the building of client-
side software. It has been described as a
“contract” between the client and the
server, such that if the client makes a
request in a specific format, it will always
get a response in a specific format or
initiate a defined action.”

Wikipedia

But what is API Security?

What Uses APIs?

•Microservices

•Mobile

•IoT

•B2B

•Serverless

•Cloud

•Single Page Application

Every Modern Application

API Security
==

API-Based Apps Security
==

Modern App Security

Traditional vs. Modern Applications

Get

HTML

API Get

Raw

Traditional

Application

Modern

Application

Traditional vs. Modern Applications

API Get

Raw

Modern

Application

• Less abstraction layers

• Client and server (and DB) speak the same JSON language

Traditional vs. Modern Applications

The differences we see in Modern Apps

• The server is used more as a proxy for data

• The rendering component is the client, not the server

• The user’s state is usually maintained and monitored by the client

• Clients consume raw data

• More parameters are sent in each HTTP request (object ID’s, values, filters)

• APIs expose the underlying implementation of the app

What Makes APIs Vulnerable?

1. The abundancy of API endpoints makes the attack surface bigger

What Makes APIs Vulnerable?

2. Clients consume raw data

More parameters are sent in each HTTP request (object ID’s, values, filters)

What Makes APIs Vulnerable?

3. The flexibility of CI/CD processes today, and the effortless deployment of new microservices, containers,

and cloud infrastructure.

It takes just a few clicks to spin up new APIs (hosts).

The rate of updates and changes in APIs may be too fast to handle.

APIs Become hard to track:

• Shadow APIs

• Old Exposed APIs

It’s Not All Bad News

•Traditional vulnerabilities are less common in API-based apps:

⬇ SQLi – due to increasing use of frameworks/ORMs

⬇ CSRF – due to authorization headers instead of cookies

⬇ Path Manipulations – due to cloud-based storage

⬇ Classic IT security issues - SaaS

Bridging The Gap

Bridging The Gap

Bridging The Gap

OWASP API Security Project

OWASP API Security Top 10

OWASP API Security Top 10

OWASP Top 10• API1: Broken Object Level Authorization

• API2: Broken Authentication

• API3: Excessive Data Exposure

• API4: Lack of Resources & Rate Limiting

• API5: Broken Function Level Authorization

• API6: Mass Assignment

• API7: Security Misconfiguration

• API8: Injection

• API9: Improper Assets Management

• API10: Insufficient Logging & Monitoring

API8 – Injection

Why drop from A1 to A8?

“Injection” is #1 because of SQL Injections.

SQL Injection are not very common in

modern APIs, because:

Use of ORMs

Increasing use of NoSQL

NoSQL injections are a thing, but are

usually not as common / severe

API10 - Insufficient Logging & Monitoring

Same as OWASP Top 10

Exploitation of insufficient logging and monitoring is the bedrock of nearly every

major incident.

Attackers rely on the lack of monitoring and timely response to achieve their goals

without being detected.

OWASP API Security Top 10

OWASP Top 10

Access Control

• API1: Broken Object Level Authorization

• API2: Broken Authentication

• API3: Excessive Data Exposure

• API4: Lack of Resources & Rate Limiting

• API5: Broken Function Level Authorization

• API6: Mass Assignment

• API7: Security Misconfiguration

• API8: Injection

• API9: Improper Assets Management

• API10: Insufficient Logging & Monitoring

Access Control
API Security’s Biggest Challenge

Access Control

•API1: Broken Object Level Authorization

•API2: Broken Authentication

•API5: Broken Function Level Authorization

API2: Broken Authentication

Lack of protection Misimplementation

A
P

I

Login

Mobile Login

Forgot Password

Update Location

Edit Photo

Protection

Extra

Protection

• Captcha

• Account lockout mechanism

• Credentials Stuffing Protection

• JWT Supports {“alg”:”none”}

• No validation of authentication provider

• Passwords stored without salt

• Etc…

API2: Broken Authentication

Why is it so common in APIs?

• Authentication endpoints are exposed to anyone by design.

• Software/security engineers have misconceptions.

API keys should not be used for user's authentication

Authorization != Authentication

• Multiple authentication flows in modern apps

IoT, Mobile, Legacy, Deep links with credentials

etc…

Access Control

•API1: Broken Object Level Authorization

•API2: Broken Authentication

•API5: Broken Function Level Authorization

API1: Broken Object Level Authorization
(BOLA)

100

101

102

API1: Broken Object Level Authorization
(BOLA)
Why is it so common in APIs?

• The attack surface is much wider

• No security solution exists that solves the problem

API1: Broken Object Level Authorization
(BOLA)

Why not “IDOR”? It's not accurate / indicative enough

• "IDOR" - Insecure Direct Object Reference

• "IDOR" implies that object reference should be indirect

(salted hash map / random string added to every ID)

• The problem is not the Object Reference, but a lack of authorization

What would happen if you asked your developers to

implement “Indirect” mechanism in every place that receives

ID?

Access Control

•API1: Broken Object Level Authorization

•API2: Broken Authentication

•API5: Broken Function Level Authorization

API5: Broken Function Level
Authorization (BFLA)

Admin API

Regular User

Admin

Public API

API5: Broken Function Level
Authorization (BFLA)

Why is it so common in APIs?

• Function Level Authorization can be implemented in different ways:

Code, Configuration, API Gateway, etc.

• Easier to detect and exploit in APIs – Endpoints are predictable

Get user’s profile

(Regular endpoint)

Delete user

(Admin endpoint)

Traditional GET /app/users_view.aspx?user_id=1337
POST app/admin_panel/users_mgmt.aspx?

action=delete&user_id=1337

Modern GET /api/v2/users/1337 DELETE /api/v2/users/1337

Access Control Vulnerability
in Real Life

Excess Data

OWASP API Security Top 10

OWASP Top 10

Access Control

• API1: Broken Object Level Authorization

• API2: Broken Authentication

• API3: Excessive Data Exposure

• API4: Lack of Resources & Rate Limiting

• API5: Broken Function Level Authorization

• API6: Mass Assignment

• API7: Security Misconfiguration

• API8: Injection

• API9: Improper Assets Management

• API10: Insufficient Logging & Monitoring

API3 – Excessive Data Exposure

Filtering sensitive

data on the client

side is always a

bad idea

GET

v1/users/profiles/717

API

Name:

Role:

Hobby:

Super Safe

App

Bob

Minion

Bananas

Bob’s Profile

API3 – Excessive Data Exposure

Why it is so common?

REST Standards encourage developers to implement APIs in a

generic way

Use of generic functions as "to_json" from the Model / ORM,

without thinking about who's the consumer

API3 - 3Fun Hack

Found by Alex Lomas, Pen Test Partners

https://www.pentestpartners.com/security-blog/group-sex-app-leaks-locations-pictures-and-other-personal-details-identifies-users-in-white-house-and-supreme-court/

Found by Alex Lomas, Pen Test Partners

https://www.pentestpartners.com/security-blog/group-sex-app-leaks-locations-pictures-and-other-personal-details-identifies-users-in-white-house-and-supreme-court/

API3 - 3Fun Hack

Found by Alex Lomas,

Pen Test Partners

https://www.pentestpartners.com/security-blog/group-sex-app-leaks-locations-pictures-and-other-personal-details-identifies-users-in-white-house-and-supreme-court/

API6 – Mass Assignment

Modern frameworks encourage developers to use

“Mass Assignment” functions

Might contain sensitive params that the user should not have access to

POST /api/users/new

{“username”:”Bob”, ”pass”:”123456”}

POST /api/users/new

{“username”:”Bob”, ”pass”:”123456”, ”role”:”admin”}

Dev(Sec)Ops

Excess Data

OWASP API Security Top 10

OWASP Top 10

Access Control

• API1: Broken Object Level Authorization

• API2: Broken Authentication

• API3: Excessive Data Exposure

• API4: Lack of Resources & Rate Limiting

• API5: Broken Function Level Authorization

• API6: Mass Assignment

• API7: Security Misconfiguration

• API8: Injection

• API9: Improper Assets Management

• API10: Insufficient Logging & Monitoring

API4 - Lack of Resources & Rate Limiting

When a resource (memory, CPU, DB, file, etc.) is exposed to the web,

there should be defined use limit

Requests

Number, Frequency

Files

Size

Strings

Length

API4 - Lack of Resources & Rate Limiting

Several consequences for not having a limit:

DoS – Denial of Service

Brute-force attacks

Credential Stuffing

API7 – Security Misconfiguration

Weak encryption

Unnecessary exposed HTTP methods

CSRF protection turned off

Detailed errors

Improper CORS

Bad Things

API9 – Improper Assets Management

Two similar housekeeping Issues

Lack of documentation Exposed Risky APIs

API9 – Improper Assets Management

Two similar housekeeping Issues

Lack of documentation

payment-

api.xxx.com

/v2/transfer_money

/v2/download_transactions_as_pdf

/v0/legacy_b2b/export_all_users

Exposed Risky APIs

mobile-api.xxx.com

beta-api.xxx.com

payments-

api.xxx.com

A
P

I
G

a
te

w
a

y

Client

API9 – Improper Assets Management

Why is it such a big issue?

APIs change all the time because of CI/CD. Developers are focused on delivering

and not documenting

With cloud & deployment automation it is way too easy to spin up new APIs and

machines

API hosts that have been forgotten

Complete environments that have been forgotten

(what the heck is qa-3-old.app.com ?)

Dev(Sec)Ops

Excess Data

OWASP API Security Top 10

OWASP Top 10

Access Control

• API1: Broken Object Level Authorization

• API2: Broken Authentication

• API3: Excessive Data Exposure

• API4: Lack of Resources & Rate Limiting

• API5: Broken Function Level Authorization

• API6: Mass Assignment

• API7: Security Misconfiguration

• API8: Injection

• API9: Improper Assets Management

• API10: Insufficient Logging & Monitoring

Summary

What You Need to Remember

•Modern API-based apps are different

•Being different, they have their own security issues

•The attack surface is much wider

•There is more data moving between components

•Access Control is a real challenge

www.checkmarx.com

/ Thank you

