(¥ Checkmarx

APl Security

Erez Yalon

OWASP Singapore | 13 July 2021

YW @ErezYalon

G°°9|e 'S Azure

Qp GitLab

W facebook.

Question: What do all this logos have in common?

Erez Yalon, Head of Security Research, Checkmarx

* Previous independent security researcher and developer

* Better at breaking than building

* Responsible for maintaining Checkmarx’s top notch vulnerability
detection technology

* Lead several OWASP projects including the APl Security and CN Projects

* Founder of AppSec Village in DEF CON

(¥ Checkmarx

What is an API?

But what is APl Security?

"An application programming interface
(API) is an interface or communication
protocol between a client and a server
intended to simplify the building of client-
side software. It has been described as a
“contract” between the client and the
server, such that if the client makes a
request in a specific format, it will always
get a response in a specific format or
initiate a defined action.” ‘

Wikipedia

(2 Checkmarx

What Uses APIs?

*Microservices

*Mobile

eloT

*B2B

Serverless

Cloud

*Single Page Application

Every Modern Application

(2 Checkmarx

API Security

(2 Checkmarx

Traditional vs. Modern Applications

Traditional @ @ @

N

Application '-'

Get
> |.com| g
O HTML

API Get

Modern

N

0e0
Application '-‘

Raw @

(2 Checkmarx

Traditional vs. Modern Applications

Less abstraction layers

Client and server (and DB) speak the same JSON language

API Get
Modern @o@® \ >
Application .-‘)

Raw

(2 Checkmarx

Traditional vs. Modern Applications

The differences we see in Modern Apps

The server is used more as a proxy for data
« The rendering component is the client, not the server

* The user’s state is usually maintained and monitored by the client

e (Clients consume raw data

* More parameters are sent in each HTTP request (object ID’s, values, filters)

* APIs expose the underlying implementation of the app

(2 Checkmarx

What Makes APIs Vulnerable?

1. The abundancy of APl endpoints makes the attack surface bigger

(2 Checkmarx

What Makes APIs Vulnerable?

2. Clients consume raw data
More parameters are sent in each HTTP request (object ID’s, values, filters)

Ve

(2 Checkmarx

What Makes APIs Vulnerable?

3. The flexibility of CI/CD processes today, and the effortless deployment of new microservices, containers,
and cloud infrastructure.
It takes just a few clicks to spin up new APIs (hosts).

The rate of updates and changes in APls may be too fast to handle.

APIs Become hard to track:

+ Shadow APIs "V IT.S ALMOST T00 Ensv

« Old Exposed APIs

{
* ".
e
=

Cl/CD @

Ceoes

(2 Checkmarx

It's

Not All Bad News

« Traditional vulnerabilities are less common in API-based apps:

!

(2 Checkmarx

SQLi — due to increasing use of frameworks/ORMs
CSRF — due to authorization headers instead of cookies
Path Manipulations — due to cloud-based storage

Classic IT security issues - SaaS

Bridging The Gap

Bridging The Gap

(2 Checkmarx

OWARSP

Open Web Application
Security Project

T10

A1:2017-
Injection
o

OWASP Top 10
Application Security Risks — 2017

A2:2017-Broken
Authentication

N

A3:2017-
Sensitive Data
Exposure

A4:2017-XML
External
Entities (XXE)

A5:2017-Broken
Access Control

AN

A6:2017-Security
Misconfiguration

.

AT:2017-
Cross-Site
Scripting (XSS)
<

AB:2017-
Insecure
Deserialization

© A9:2017-Using

Components
with Known
\ Vulnerabilities

A10:2017-

Insufficient

Logging &
. Monitoring

[¢]

Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when untrusted data is sent
to an interpreter as part of a command or query. The attacker's hostile data can trick the
interpreter into executing unintended commands or accessing data without proper autherization.

Application functions related to authentication and session management are often implemented
incorrectly, allowing attackers to compromise passwords, keys, or session tokens, or to exploit
other implementation flaws to assume other users’ identities temporarily or permanently.

Many web applications and APls do not properly protect sensitive data, such as financial,
healthcare, and PlI. Attackers may steal or modify such weakly protected data to conduct credit
card fraud, identity theft, or other crimes. Sensitive data may be compromised without extra
protection, such as encryption at rest or in transit, and requires special precautions when
exchanged with the browser.

Many older or poorly configured XML processors evaluate external entity references within XML
documents. External entities can be used to disclose internal files using the file URI handler,
internal file shares, internal port scanning, remote code execution, and denial of service attacks.

Restrictions on what authenticated users are allowed to do are often not properly enforced.
Attackers can exploit these flaws to access unauthorized functionality and/or data, such as access
other users' accounts, view sensitive files, modify other users’ data, change access rights, etc.

Security misconfiguration is the most commonly seen issue. This is commonly a result of insecure
default configurations, incomplete or ad hoc configurations, open cloud storage, misconfigured
HTTP headers, and verbose error messages containing sensitive information. Not only must all
operating systems, frameworks, libraries, and applications be securely configured, but they must
be patched and upgraded in a timely fashion.

XSS flaws occur whenever an application includes untrusted data in a new web page without
proper validation or escaping, or updates an existing web page with user-supplied data using a
browser API that can create HTML or JavaScript. XSS allows attackers to execute scripts in the
victim's browser which can hijack user sessions, deface web sites, or redirect the user to
malicious sites.

Insecure deserialization often leads to remote code execution. Even if deserialization flaws do not
result in remote code execution, they can be used to perform attacks, including replay attacks,
injection attacks, and privilege escalation attacks.

Components, such as libraries, frameworks, and other software modules, run with the same
privileges as the application. If a vulnerable component is exploited, such an attack can facilitate
serious data loss or server takeover. Applications and APIs using components with known
vulnerabilities may undermine application defenses and enable various attacks and impacts.

Insufficient logging and menitoring, coupled with missing or ineffective integration with incident
response, allows attackers to further attack systems, maintain persistence, pivot to more systems,
and tamper, extract, or destroy data. Most breach studies show time to detect a breach is over
200 days, typically detected by external parties rather than internal processes or monitoring.

Bridging The Gap

OWASP API Security Project

,,,,,

(¥ Checkmarx

OWASP API Security Top 10

OWASP API Security Top 10

1: Broken Object Level Authorization OWASP Top 10
2: Broken Authentication

3: Excessive Data Exposure

4: Lack of Resources & Rate Limiting

5: Broken Function Level Authorization
6: Mass Assignment

7: Security Misconfiguration

8: Injection

PI9: Improper Assets Management

10: Insufficient Logging & Monitoring

J>J>J>J>>CJ>J>J>J>

>
.,

Checkmarx

API8 — Injection

OWASP Top 10 - 2017
Why drop from Al to A8?

o “Injection” is #1 because of SQL Injections. A2:2017-Broken Authentication
A3:2017-5ensitive Data Exposure

= SQL Injection are not very common in
modern APIs, because:

o]
Use Of ORMS A6:2017-Security Misconfiguration
o Increasing use of NoSQL A7:2017-Cross-Site Seripting (XSS)

A4:2017-XML External Entities (XXE)

A5:2017-Broken Access Control

AR: 201 7-Insecure Deserialization

A9:2017-Using Components with Known Vulnerabilities

= NoSQL injections are a thing, but are

A10:2017-Insufficient Logging & Monitoring
usually not as common / severe

(¥ Checkmarx

API10 - Insufficient Logging & Monitoring

Same as OWASP Top 10

Exploitation of insufficient logging and monitoring is the bedrock of nearly every
major incident.

Attackers rely on the lack of monitoring and timely response to achieve their goals
without being detected.

(¥ Checkmarx

OWASP API Security Top 10

1: Broken Object Level Authorization OWASP Top 10
2: Broken Authentication Access Control
3: Excessive Data Exposure

4: Lack of Resources & Rate Limiting

5: Broken Function Level Authorization
6

7

8:

: Mass Assignment

: Security Misconfiguration

. Injection

PI9: Improper Assets Management

10: Insufficient Logging & Monitoring

J>J>J>J>>CJ>J>J>J>

>
.,

v,Checkmarx

(¥ Checkmarx

Access Control
APl Security’s Biggest Challenge

Access Control

« AP11: Broken Object Level Authorization
« AP12: Broken Authentication

« API5: Broken Function Level Authorization

(2 Checkmarx

API2: Broken Authentication

Lack of protection

Login
Mobile Login
Forgot Password

API

« Captcha

 Account lockout mechanism

» Credentials Stuffing Protection

(2 Checkmarx

Misimplementation

JWT Supports {“alg”:"none”
No validation of authentication provider
Passwords stored without salt

Etc...

API2: Broken Authentication

Why is it so common in APIs?
» Authentication endpoints are exposed to anyone by design.

» Software/security engineers have misconceptions.
API keys should not be used for user's authentication
Authorization != Authentication
* Multiple authentication flows in modern apps
loT, Mobile, Legacy, Deep links with credentials

etc...

(2 Checkmarx

Access Control

* API1: Broken Object Level Authorization
« AP12: Broken Authentication

« API5: Broken Function Level Authorization

(2 Checkmarx

API1: Broken Object Level Authorization
(BOLA)

'-I>|
[=]
o

()
o
o 2
D Q-
o 2
c
g 3
7 2
[c .
T 'S
< =}
R
Qo
- |
QH&”@”&

(IR

(2 Checkmarx

API1: Broken Object Level Authorization
(BOLA)

Why is it so common in APIs?
 The attack surface is much wider

* No security solution exists that solves the problem

(2 Checkmarx

API1: Broken Object Level Authorization
(BOLA)

ADD RANDOM '
STRING TO EACHID <,

Why not “IDOR"? It's not accurate / indicative enough

« "IDOR" - Insecure Direct Object Reference

« "IDOR" implies that object reference should be indirect

(salted hash map / random string added to every ID)

« The problem is not the Object Reference, but a lack of authorization

What would happen if you asked your developers to

Implement “Indirect” mechanism in every place that receives
ID?

(2 Checkmarx

Access Control

« AP11: Broken Object Level Authorization
« AP12: Broken Authentication

« API5: Broken Function Level Authorization

(2 Checkmarx

API5: Broken Function Level
Authorization (BFLA)

. g DELETE api/v2/users/717 Admin API

AT
el users! i
P

Public API

Regular User

(2 Checkmarx

API5: Broken Function Level
Authorization (BFLA)

Why is it so common in APIs?
* Function Level Authorization can be implemented in different ways:
Code, Configuration, APl Gateway, etc.

» Easier to detect and exploit in APIs — Endpoints are predictable

» : . POST app/admin_panel/users_mgmt.aspx?
? =
Traditional GET /app/users_view.aspx?user_id=1337 N 1 A

Modern GET /api/v2/users/1337 DELETE /api/v2/users/1337

A

(2 Checkmarx

mN et Q STORAGE INMOVATION APPLE SECURITY MORE

D) MusT READ: Windows 11: Everything you need to know

Coursera API vulnerabilities disclosed by
researchers

Coursera took “prompt ownership” of the bugs, once reported.

® E f >~ A By Charlie Osborne for Zero Day | July
in e £ BBl 5. 2021--13:00 GMT (14:00 BST)

Toplc: Security

Researchers have disclosed a set of APl vulnerabilities in the Coursera

platform.

. KASEYA ATTACK
On Thursday, Checkmarx security researcher

Kaseya ransomware supply

chaln attack: What you need 1o
security failings in the Coursera online learning KNow

(2 Checkmarx

Paulo Silva revealed the discovery of multiple

Access Control Vulnerability
in Real Life

mNet Q IOT CLOUD Al SECURITY MORE

|D MUST READ: GPS collars for lions and cheetahs: How loT and open source are protecting rare animals

Smart vacuum flaws could give hackers access
to camera feed, say security researchers

Researchers at Checkmarx detail security issues discovered with a robot
vacuum cleaner.

(2 Checkmarx

1 OPS locason(s) for e 5510

ASSIVI SUAN OV 1

OWASP API Security Top 10

 |API1: Broken Object Level Authorization OWASP Top 10
« |API2: Broken Authentication Access Control
* API4: Lack of Resources & Rate Limiting _
« |API5: Broken Function Level Authorization

P|7: Security Misconfiguration

P[8: Injection

PI9: Improper Assets Management
PI10: Insufficient Logging & Monitoring
(2 Checkmarx

> (> >

>

API3 — Excessive Data Exposure

Super Safe

App
Bob’s Profile

VN

0 0)

-’

Name: Bob
Role: Minion
Hobby: Bananas

(¥ Checkmarx

"users": [{
"user id™: V17V,
"rame": "Eobk™,
"BEaole™: "Minion",
"Hoblki=szs": ["Bananas"],

"oddress": "Cru's Mansion

"profile pic™: "oroifiles/ bab.ijpg”,

f 1000 Ewvil RdA"

GET
vl1/users/profiles/717

A

v

Filtering sensitive
data on the client
side is always a
bad idea

API3 — Excessive Data Exposure

Why it Is so common?

REST Standards encourage developers to implement APIs in a
generic way

Use of generic functions as "to_json" from the Model / ORM,
without thinking about who's the consumer

Checkmarx

API3 - 3Fun Hack

1,500,000+ 180,000+ 800,000+ Chat Synchronously

Members Messages Sent Daily Photo-Verified Members Messages Sent Daily

Found by Alex Lomas, Pen Test Partners

(¥ Checkmarx

https://www.pentestpartners.com/security-blog/group-sex-app-leaks-locations-pictures-and-other-personal-details-identifies-users-in-white-house-and-supreme-court/

| Host | Method | URL |Params |Edted |Status |Length | MIME type

322
325
326
327

1329
KX}

EAS

https /‘www.go3fun co POST Jaccount_kat_reg v 447 JSON
https //www.go3fun co POST Juser/device_token v 198 JSON
https //www.go3fun co POST luser/update v 265 JSON
https /iwww.go3fun co POST /reset_push_badge 198 JSON
https /Awww.go3fun co GET /match_users rom=0&lattude=51 (IR v 23807 JSON
https /Awww go3fun co GET luset/refresh 788 JSON

18838883

—— v R el

| Request |Respoose | O

"latizude”: ":l. N

2 Tahip®: *2%, ,

"menbezship”: "2* Found by Alex Lomas, Pen Test Partners

*pizchday”: "1977-UR".

"sex_orxient™: “4%,

"gendez*®: "1°,

"longitude™: "-0.l G,

"photo_verified status™": "1",

"active™: "0",

"paztner_sex orient®": "Q0%,

"iiked _me": "0V,

"sectings®: ¢
"show_online_status™: "lF,
"show_distance™: "1

)

i

"usernare”: - NENGGE—_ES

fusz L4t LT ——

"about_me™: "Kinky and attractive Irench financier open to many things ...

Sphete®: “hotps: sl amazonavs.con dfun fl) ol Mmoo,

"descz®: aull

& Checkmarx

https://www.pentestpartners.com/security-blog/group-sex-app-leaks-locations-pictures-and-other-personal-details-identifies-users-in-white-house-and-supreme-court/

API3 - 3Fun Hack

=y
¥
The White
House
South Lawn
+
orcoran School of the O
rs & Design at GW
White House
O O Basketball Court p‘
e Statue President’s '
S AN Park

n Red Crogsis — 'n L = | Found by Alex Lomas,

Pen Test Partners

(¥ Checkmarx

https://www.pentestpartners.com/security-blog/group-sex-app-leaks-locations-pictures-and-other-personal-details-identifies-users-in-white-house-and-supreme-court/

API16 — Mass Assignment

Modern frameworks encourage developers to use
“Mass Assignment” functions

NodeJS:
var user = new User(req.body); POST /api/users/inew
user.save(); {"username™."Bob”, "pass™:"123456"}
Rails:
Quser = User.new (params/[:user]) POST /api/users/new

; {fusername”™."Bob”, "pass”:"123456", "role”:"admin”}

Might contain sensitive params that the user should not have access to

(¥ Checkmarx

OWASP API Security Top 10

* |API1: Broken Object Level Authorization OWASP Top 10
« |API2: Broken Authentication Access Control
* |API4: Lack of Resources & Rate Limiting _
* |API5: Broken Function Level Authorization

Dev(Sec)Ops

7: Security Misconfiguration

8: Injection

9: Improper Assets Management

10: Insufficient Logging & Monitoring
(2 Checkmarx

> || > || >

D
D
D
D

>

APl4 - Lack of Resources & Rate Limiting

When a resource (memory, CPU, DB, file, etc.) is exposed to the web,
there should be defined use limit

Requests

Number, Freqguency
Files

Size
Strings

Length

Checkmarx

APl4 - Lack of Resources & Rate Limiting

Several consequences for not having a limit:
DoS — Denial of Service

Brute-force attacks
Credential Stuffing

Checkmarx

API7 — Security Misconfiguration

= Weak encryption

= Unnecessary exposed HTTP methods
» CSRF protection turned off
= Detalled errors

* Improper CORS

(¥ Checkmarx

API9 — Improper Assets Management

Two similar housekeeping Issues

Lack of documentation Exposed Risky APIs

Checkmarx

API9 — Improper Assets Management

Two similar housekeeping Issues

Lack of documentation Exposed Risky APIs

beta-api.xxx.com -

Iv2/download_transactions_as_pdf

Iv2/transfer_money IvO/legacy b2b/export_all_users payments- =
api.xxx.com = /
T)
payment-) Client
2 Uz ts el mobile-api.xxx.com o

(¥ Checkmarx

API9 — Improper Assets Management
Why is it such a big issue?

* APIs change all the time because of CI/CD. Developers are focused on delivering
and not documenting

= With cloud & deployment automation it is way too easy to spin up new APIs and
machines

o API hosts that have been forgotten

o Complete environments that have been forgotten
(what the heck is ga-3-old.app.com ?)

Checkmarx

OWASP API Security Top 10

* |API1: Broken Object Level Authorization OWASP Top 10
* |API2: Broken Authentication Access Control
* |/API4: Lack of Resources & Rate Limiting _
* |API5: Broken Function Level Authorization

Dev(Sec)Ops

7: Security Misconfiguration

8: Injection

9: Improper Assets Management

10: Insufficient Logging & Monitoring
(2 Checkmarx

> || > || >

D
D
D
D

>

(¥ Checkmarx

Summary

What You Need to Remember

*Modern APl-based apps are different

Being different, they have their own security issues
*The attack surface is much wider

*There is more data moving between components

«Access Control is a real challenge

(2 Checkmarx

/ Thank you

www.checkmarx.com

