AWSGoat : A Damn Vulnerable
AWS Infrastructure

7INE

About Me

Jeswin Mathai
e Chief Architect, Lab Platform @ INE
e Published Research at Black Hat US/Asia Arsenal, DEF CON USA/China
Demolabs
e Gave research talk at DEF CON China and Rootcon Philippines
e Co-Trainer in Training: Black Hat Asia, HITB AMS, GSEC NZ OWASP day, Rootcon
13

NE

"
O
O
c
O
S

&
c
(@)

O

NEW ZEALAND DAY

OWwARSP

Team Members

e Nishant Sharma, Director, Lab Platform
e Sanjeev Mahunta, Software Engineer (Cloud)
e Shantanu Kale, Software Engineer (Cloud)

NE

About INE

[
MNE Learning Business Solutions INE Live Pricing & Plans Sign In Request Information Start for Free

Technology never stops
evolving. Neither
should you.

Hands-on IT training for teams and individuals. Train your next
rockstar, accelerate your digital transformation, and protect
your critical infrastructure.

Get Started Now INE Business Plans

y

Trust your upskilling to the organization that invented Hands-On Training. Just like'the world's top companies have.

B® Microsoft

Threatscape

Threatscape

S A -
O EORE <O e B
N @ 7 & \ =

The Motivation

e Training Needs
o Basics and Fundamentals
Enumeration techniques
Abusing IAM, S3, APl Gateway Misconfigurations

@)

©)

o Attack vectors on Lambda and EC2
o What Next?

e Lack of Real World AWS Pentesting Environment

e Contribution from the open source community and security professionals

e Release of OWASP Top 10: 2021

NE

Introducing AWSGoat!

AWSGoat : A Damn Vulnerable AWS Infrastructure

e Mimics real-world infrastructure but with added vulnerabilities
e Multiple application stacks - Multiple exploitation/escalation paths
e Features OWASP Top 10: 2021

e Focused on Black-box approach

e Sltill in early stage
o Module 1 : Blog Application
o Module 2 : HR Application (Will be released post BlackHat US)

e Co-exist with other projects

NE

OWASP Top 2021

2017 2021

= A01:2021-Broken Access Control
02:2017-Broken Aut ticatio > A02:2021-Cryptographic Failures
A03:2017-Sensitive Data Exposure = A03:2021-Injection

A04:2017-XML External Entities (XXE) : (New) A04:2021-Insecure Design

A05:2017-Broken Access Control N > A05:2021-Security Misconfiguration
A06:2017-Security Misconfiguration ' = A06:2021-Vulnerable and Outdated Components
A07:2017-Cross-Site Scripting (XSS) A07:2021-ldentification and Authentication Failures
A08:2017-Insecure Deserialization = (New! A08:2021-Software and Data Integrity Failures
A09:2017-Using Components with Known Vulnerabilities — > A09:2021-Security Logging and Monitoring Failures*
A10:2017-Insufficient Logging & Monitoring (New) A10:2021-Server-Side Request Forgery (SSRF)*

* From the Survey

Image Reference: https://owasp.ora/www-project-top-ten/ INE\

https://owasp.org/www-project-top-ten/

AWSGoat : Module 1 (Blog Application)

e AO1: Broken Access Control

e AO02: Cryptographic Failure

e AO03: Injection

e AO04: Insecure Design

e AO05: Security Misconfiguration

e AOQ7: Identification and Authentication Failures

e A10: Server Side Request Forgery
INE

AWSGoat : Module 1 (Blog Application)

Q | —

Blog Application

-

E— E— &=
R T el

Application Resource Dev S3 bucket
Bucket

Development Instance Data API

- N oo

Blog Application Frontend App

O

Data API

|
{%

Runtime API

Blog Application API

o

_{

Role Credentials

~

S3 Buckets

e DynamoDB Tables

T
!
Aej

Building Realistic Insecure Application : Challenges

e Security Professional vs Seasoned Developers
e Mimicking Development Process

e Multiple Developer Environments

e Fast paced development.

e Lack of secure code practices

NE

Project Family

\,

GCPSheep

AzureCGoagt

Installation

e Repository: hitps://github.com/ine-labs/AWSGoat

e Using GitHub Actions
o Configure Credentials in GitHub Secrets
o Run the “deploy” workflow

e Manual Installation (Linux Machine)
o Requirements

m AWSCLI
m Terraform
m Python

m Git

o Commands:
m aws configure
m git clone https://github.com/ine-labs/AWSGoat
m terraform init
|

terraform apply "’\|E\

https://github.com/ine-labs/AWSGoat
https://github.com/ine-labs/AWSGoat

Exploring AWSGoat

INE

Attacking the Application

e XSS

e SQL Injection

e Insecure Direct Object Reference

e Server Side Request Forgery

e Sensitive Data Exposure and Password Reset
e S3 Misconfiguration

e |AM Privilege Escalation

NE

Lambda Environment ;: Overview

e Function Code
e Highly Scalable

e Underlying servers are managed by AWS

@ Request

> ’ 7 ‘ Co\knxt;i;er i
E Triggers d
User Lambda Amazon’s Server

Lambda Environment ;: Overview

@ Request

= ’
Triggers -
User Lambda

@ Request

Triggers
User Lambda

9
Q Request

N ——
Triggers
User Lambda

Container

Amazon’s Server

Container [

Amazon’s Server

Container [

Amazon’s Server

Lambda Environment : Role

4 Access policy v >
" 4
X
AWS IAM
role AWS IAM
4 policy
2
2
c
2
e
=
(&)
Q
&
3 g 2
‘ Logs || | n API calls
Amazon AWS Amazon
CloudWatch Lambda DynamoDB

Logs function table

Image Source: https://aws.amazon.com/blogs/security/how-to-create-an-aws-iam-policy-to-grant-aws-lambda-access-to-an-amazon-dynamodb-table/ INE\

https://aws.amazon.com/blogs/security/how-to-create-an-aws-iam-policy-to-grant-aws-lambda-access-to-an-amazon-dynamodb-table/

Server Side Request Forgery

e Interacting with the Lambda Runtime API [Lambda Runtime qu

e Reading the source code of the application 1

e Reading the environment variables
o Enumerate and attack other AWS Resources
o Escalate Privileges Runtime - Bootstrap

e Enumerate other applications/instances in the VPC i

A 4

Lambda Handler

NE

API| Gateway

e Service Endpoints
o protocol://service-code.region-code.amazonaws.com
o e.g: https://[dynamodb.us-west-2.amazonaws.com/

e https://{restapi_id}.execute-api.{region}.amazonaws.com/{stage_name}/
o https://0od87ivnul.execute-api.us-east-1.amazonaws.com/dev/

e https://{restapi_id}.execute-api.{region}.amazonaws.com/{stage_name}/{resource_name}/
o https://0od87ivnul.execute-api.us-east-1.amazonaws.com/dev/list

https://dynamodb.us-west-2.amazonaws.com/

Hunting S3 buckets

e Globally unique

e Company-wide naming practices

e Predictable names - based on departments/applications
e Misconfigured Policy - plethora of information

e Tool: https://github.com/jordanpotti/AWSBucketDump

https://github.com/jordanpotti/AWSBucketDump

Future Plans: Multiple Applications across Multiple Accounts

Organization root

D ——— P Policies applied at root apply toall
- accounts in the organization

\/ 2..a
. v Policies
X

@ j Create policies (apply atroot, OU,
i x or account level)

@ Enable cross-account services
and delegate to member accounts

Management account

Policies applied at the OU apply to
accounts within the OU

a8

% : ou ou
Organization Units (OU): [!
Contain member accounts, can also |
contain nested OUs 89_5 8%
' Policies can be assigned to
Nested OU ; Nested OU) ‘ OUs or directly to accounts
v ; v

Member accounts

Y
Member accounts can be delegated to administer @é 2

a specific service for the organization

Member account

Merégcount 88
o

Member account

Member account

NE

More modules: EC2, EKS and Elastic Beanstalk

Multi account infrastructure
Working with the community
laC Misconfigurations

Secure coding/deployment practices

NE

Thank youl!

imathai@ine.com

mailto:jmathai@ine.com

