Microservices Security, Container
Runtime Security, MITRE ATT&CK®
for Kubernetes (K8S) and Service
Mesh for Security (Demo Included!)

Nathan Aw
https://www.linkedin.com/in/awnathan
15 July 2020

https://www.linkedin.com/in/awnathan

This Talk

Background - Context - Problem Statement
Microservices 101 & Primer
Recap - APl Security

Microservices Security

o Kubernetes (K8S) Security
o MITRE ATT&CK® for K8S
o Container Runtime Security

How to Secure Your K8S - The Cloud Native 4Cs
Service Mesh for Microservice Security

Opinions/views expressed in the talk are solely my own and do not
express the views or opinions of my employer.

Background - Context - Problem

In the last meetup, we focused on
APIls Security. APls are the front
door to Microservices. Today we
focus on Microservices Security.

The Microservices Architecture/
Paradigm has special security
considerations due to:

(1) tremendous increase in the
number of components

(2) complex network environments
comprised of various interaction
styles among these components.

The attributes...

And the Security
Implications...

Decoupled
Components

Increased
Complexity

Polyglot
Programming/
Architecture

Many components to
track

Many communication
styles (e.g., REST),
protocols (e.g.,
HTTP) and data
formats (e.g., JSON)

https://owasp.ora/www-chapter-singapore/assets/presos/Securing vour APIs -

OWASP_API_Top_10_2019._Real-life_Case.pdf

https://owasp.org/www-chapter-singapore/assets/presos/Securing_your_APIs_-_OWASP_API_Top_10_2019,_Real-life_Case.pdf

Who | am. Hello.

Currently an AppDevSec Digital Solutions Architect and a Full-Stack Developer in the Financial
Services Industry (FSI).
o First a Full-Stack Cloud-Native Developer, then a Solutions Architect
o Previously worked in a local bank as a Full-Stack Blockchain Engineer
o Have Designed, Built, Deployed and Operated > §8 Unique Polyglot Based Production
Grade Microservices (Micro Frontends, Backend for Frontends, Backends) over last 3 years
Specialties around API, Microservices that enables a Seamless & Frictionless Customer Journey
Experience (CJX)
o On “Hybrid-Multi” Cloud Native Platforms
o On API, Microservices Security, Container Runtime Security and MITRE ATT&CK® for
Kubernetes(K8S)
Technology Stack: Golang, React, Kafka, Spring Boot, NodeJS, Apigee, Kong, Zuul, GraphQL,
Azure Kubernetes Service (AKS), Elastic Kubernetes Service (EKS), Openshift, Service Mesh
(Istio, Linkerd, Envoy), Cloud Foundry, GraphQL and many more...
Designing, building and operating Scalable, Secure and Robust APIs and Microservices is my
passion!
https://www.linkedin.com/in/awnathan

https://www.linkedin.com/in/awnathan

1

What are Microservices? And what are its goals?

* Functional system
decomposed/deconstructed
into manageable and
independently deployable
components

* Functional system
decomposition implies vertical
slicing (versus horizontal
slicing through layer)

* Independent deployability
implies no shared state and
inter-process communication
via HTTP RESTful interface

2

Independent
deployability is
the objective.

3

Business Agility
as the outcome.

Authenticate __»

Resource
Gateway

API

AN

ORI NN »|API| Access

Resource

S
User
Database

SOURCE: https://www.researchgate.net/figure/Example-of-Microservice-Architecture fig1 305881421

https://www.researchgate.net/figure/Example-of-Microservice-Architecture_fig1_305881421

An lllustration of Microservices Architecture (1/2)

“Enables
developers to
use different

programming
language,
depending on
what they
believe is the
best one for the
specific business
function the

With monolithic, tightly coupled Traditional SOA allows you to make With a microservices architecture, . . .

applications, all changes must be changes to individual pieces. But developers create, maintain and microservice Is

pushed at once, making continuous each piece must be carefully altered improve new services independently, . ”

deployment impossible. to fit into the overall design. linking info through a shared data built around.
API.

Independent deployability is
SOURCE: https‘//dzone.com/articles/what-are-microservices-actually | the objective.

https://dzone.com/articles/what-are-microservices-actually

Sample Microservices Architecture (2/2)

MONOLITHIC

ARCHITECTURE MICROSERVICES ARCHITECTURE

/ User Interface \
2
DB

User Interface

Business Logic

“Allow developers to
build their
applications from
various independent
components which
can easily be
changed, removed
or upgraded without
affecting the whole
application — as is
not the case with
monoliths.”

Independent deployability is

SOURCE: https://dzone.com/articles/what-are-microservices-actually | the objective.

https://dzone.com/articles/what-are-microservices-actually

Microservices - Not a silver bullet; Multiple
Tradeoffs including “Perrow-ian” Complexity®.

“Microservices are a great pattern when they map services to disparate teams that
deliver them, or when the value of independent rollout and the value of
independent scale are greater than the cost of orchestration.” - Istio

“Value of
independent rollout
+ value of
independent scale.”

Cost of Microservices

. [1]
Orchestration. —— | ©@" k?e
considered.

“The ‘Interactive Complexity’ associated with a fundamentally distributed environment
that might result in cascading failure must be the foremost consideration.” - Nathan Aw

SOURCE: https://en.wikipedia.org/wiki/Conway%27s law; *https://www.oreilly.com/radar/cloud-adoption-in-2020/;

https://istio.io/latest/blog/2020/istiod/ ; https://en.wikipedia.org/wiki/System_accident

https://en.wikipedia.org/wiki/Conway%27s_law
https://www.oreilly.com/radar/cloud-adoption-in-2020/
https://istio.io/latest/blog/2020/istiod/
https://en.wikipedia.org/wiki/System_accident

Recap - Previous OWASP Meetup on API Security
Broken Object Level Authorization (“BOLA”)(1/2)* ™™

APIs tend to expose endpoints that handle object identifiers, creating a wide attack surface Level Access Control
issue. Object level authorization checks should be considered in every function that accesses a data source
using an input from the user.

“Independent
deployability” also
implies...

(1) no shared
state - stateless

(2) inter-process
communication
via RESTful
interface (HTTP)

Whatis it?

How itis
done?

Impact

Attackers can exploit APl endpoints that are vulnerable to broken object level
authorization

By manipulating the ID of an object that is sent within the request.

This may lead to unauthorized access to sensitive data. This issue is extremely
common in APl-based applications because the server component usually does not fully
track the client’s state, and instead, relies more on parameters like object IDs, that are sent
from the client to decide which objects to access. Unauthorized access can result in data
disclosure to unauthorized parties, data loss, or data manipulation. Unauthorized access to
objects can also lead to full account takeover. This has been the most common and
impactful attack on APIs. Authorization and access control mechanisms in modern
applications are complex and wide-spread. Even if the application implements a proper
infrastructure for authorization checks, developers might forget to use these checks before
accessing a sensitive object. Access control detection is not typically amenable to
automated static or dynamic testing.

“The interplay between Microservices Security and APIs Security needs to be very
carefully considered and examined.” - Nathan Aw

SOURCE: https://owasp.org/www-chapter-singapore/assets/presos/Securing_your APls - OWASP_API| Top 10 2019, Real-life_Case.pdf

https://owasp.org/www-chapter-singapore/assets/presos/Securing_your_APIs_-_OWASP_API_Top_10_2019,_Real-life_Case.pdf

Sample (Actual) Polyglot Microservices Architecture - Highly Simplified

-

L

% Websocket

~

GRPC
over
HTTP/2

HTTPS
REST

APl Gateway (Apigee)

J

\/

K8S Ingress Controller (Ng|nx)

Service Mesh (Istio) v

SOAP \
XML

Y

Microservice 2 (Golang)

Microservice 5 (.NET)

Microservice 1 (Node.js)

Legacy

Uicroservice 4 (Python)

X Mcrosewice 6 (Helidon)
Messaging

J Protobuf over HTTP/2

(Kafka) %\

Microservice 3 (Ktor)

\

Monitoring

Today’s
Focus

Last
Meetup
Focus

K8S

GraphQL /

Kubernetes Architecture

Master Node

y = —

Key Value Store - etcd

4

Developer

Optional Add-Ons
(DNS, UL...)

Worker Node

Optional Add-Ons
(DNS, UL..)

Users

Worker Node

SOURCE: https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams

https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams

Microservices Security (1/4) - Mere Snapshot of the

Sprawling Landscape!
Infrastructure kubernetes
g katka.
. . Contai Runti , - Istio
Microservices | | ' °g‘r§,'{;‘;ra‘t‘i2,',’“e @ cri-o
_ ’ ; .| And many
Messaging, Mesh, .* Uyl | more...
Landscape etc) docker inkerd
(A smali Programming A @ ‘
snapshot) e ANGUAR |(QUARKUS @
Frameworks VO 55
(Polyglot) | ..;:; @
“eiR MICRONAUT And many
et more...

Node.js, Deno, Golang, Rust, Quarkus, Micronaut and Vue.js are my personal favourites - ping me up to ask why!

Microservices Security (2/4) - Today’s Situation

March
2018: etcd
credentials
leak

April 2019:
vulnerabilities
discovered in
Envoy

June 2019:
Kubectl cp
Vulnerability

CQ@TCHNICA o s o s o

INSECURE BY DEFAULT

Thousands of servers found leaking
750MB worth of passwords and keys

Leaky etcd servers could be a boon to data thieves and ransomware scammers.

SOURCE: Sysdig “Securing Kubernetes in Production”;
https://arstechnica.com/information-technology/2018/03/thousands-of-servers

-found-leaking-750-mb-worth-of-passwords-and-keys/

August 2019 - Oct 2019 -
Severe Kubernetes Kubernetes API
HTTP/2 server DoS
Vulnerabilities Vulnerability

Bad Packets ,

@bad_packets

2,000+ publicly accessible etcd installations yielded 8,781
passwords. @gcollazo details what he found here:
elweb.co/the-security-f...

It really is as simple as http://<IP address of etcd
instance>:2379/v2/keys/?recursive=true

Here's an example MySQL password found:

oyment. kubernetes.io/revision\"™:\"1\"}},\"spec\
"pod-template-hash\":\"66519@664\"}},\"spec\": {}
e\ " :\"MYSQL_ROOT_PASSHORD\",\"value\":\"1234\"}]
:\"/dev/termination-logh\",\"imagePullPolicy\™:\'
11:06 AM - Mar 18, 2018 ®

\/

Q 149 O 92 people are Tweeting about this

https://arstechnica.com/information-technology/2018/03/thousands-of-servers-found-leaking-750-mb-worth-of-passwords-and-keys/
https://arstechnica.com/information-technology/2018/03/thousands-of-servers-found-leaking-750-mb-worth-of-passwords-and-keys/

Microservices Security (3/4) - Today’s Situation

Vulnerability Details : CVE-2019-1002101

The kubectl cp command allows copying files between containers and the user machine. To copy files from a
container, Kubernetes creates a tar inside the container, copies it over the network, and kubectl unpacks it on the
user?s machine. If the tar binary in the container is malicious, it could run any code and output unexpected,
NETE IR G0 AN attacker could use this to write files to any path on the user?s machine when kubectl cp is
called, limited only by the system permissions of the local user. The untar function can both create and follow
e issue is resolved in kubectl v1.11.9, v1.12.7, v1.13.5, and v1.14.0.

Publish Date : 2019-04-01 Last Update Date : 2015-10-10

June 2019:
Kubectl cp
Vulnerability

CVE-2019-11253: Kubernetes API Server JSON/YAML parsing vulnerable to

resource exhaustion attack #83253
What happened:

(G LMY raesene opened this issue on Sep 28, 2019 - 16 comments
When creating a ConfigMap object which has recursive references contained in it, excessive CPU usage can occur. This appears to

be an instance of a "Billion Laughs" attack which is quite well known as an XML parsing issue.

9 [aesens commented oniSepEs; 2017 Sidited by liagiitiy © = Applying this manifest to a cluster causes the client to hang for some time with considerable CPU usage.

Oct 2019 -

CVE-2019-11253 is a denial of service vulnerability in the kube-apiserver, allowing authorized users sending malicious YAML or

K b t AP I JSON payloads to cause kube-apiserver to consume excessive CPU or memory, potentially crashing and becoming unavailable. This :“i"e“i“’” 2
. i a3 ; : ata:
upernetes vulnerability has been given an initial severity of High, with a score of 7.5 (CV55:3.0/AV:N/ACL/PRN/UEN/S:U/CN/EN/AH). et it b e i e Recu rs ive
b: &b [*a,*a,*a,*a L= A
server DOS Prior to v1.14.0, default RBAC policy authorized anonymous users to submit requests that could trigger this vulnerability. Clusters e 4
upgraded from a version prior to v1.14.0 keep the more permissive policy by default for backwards compatibility. See the mitigation ds 8 [Se,%c o0, mc % < Y M L
i section below for instructions on how to install the more restrictive v1.14+ policy. e: 8 [*d,%,%d,%d, % . A
Vulnerability b e e
Affected versions: 81 88 [%F,%F,%F,%F,*F .
h: &h [*g,%g,%g,*e, " & om !
Kubernetes v1.0.0-1.12.x SLecRl IR, Sh th;th,Sho i e, *h]
kind: ConfigMap
Kubernetes v1.13.0-1.13.11, resolved in v1.13.12 by #83436 S
Kubernetes v1.14.0-1.147, resolved in v1.14.8 by #83435 name: yam1-bomb

: default
Kubernetes v1.15.0-1.15.4, resolved in v1.15.5 by #33434 RENESDACE Zi0e LAl

Kubernetes v1.16.0-1.16.1, resolved in v1.16.2 by #83433

[
SOURCE: https://www.cvedetails.com/cve/CVE-2019-1002101/; https://aithub.com/kubernetes/kubernetes/issues/83253

https://www.cvedetails.com/cve/CVE-2019-1002101/
https://github.com/kubernetes/kubernetes/issues/83253

Microservices Security (4/4) - Today’s Situation

Vulnerabilities or
Misconfigurations

Best Practices not
in place and/or
adhered to.

Lack of Monitoring -
Undetected
Container Breaches

52% container images fail
scans with high severity*
that leaves applications
exposed to attacks*

On average, 21
containers per node are
running as root, opening
the door for container
breakouts*

5 min container lifespan
requires purpose-built
tools for audit and
incident response*

SOURCE: Sysdig 2019 Container Usage Report

MITRE ATT&CK®
Framework for Kubernetes

ATT&CK - Adversarial Tactics, Techniques, and
Common Knowledge

For the uninitiated, Kubernetes(K8S) is an open
source container scheduling and orchestration
system.

MITRE ATT&CK® Framework for Kubernetes

ATT&CK - Adversatrial Tactics, Techniques, and Common Knowledge

Initial Access Execution Persistence Privilege Defense Credential Discovery Lateral
Escalation Evasion Access Movement
Using Cloud Exec into Backdoor Privileged Clear container Access the K8 | Access cloud
credentials container container container logs List K8S secrets APl server resources Data Destruction
Compromised |bash/cmd inside Writable Cluster-admin Delete K8S Mount service Access Kubelet Container service| Resource
Iimages in registry container hostPath mount binding events principal API account Hijacking
Kubernetes Pod / container Access container Network Cluster internal
Kubeconfig file | New container Cronlob hostPath mount name similarity service account mapping networking | Denial of service
Applications Applications
credentials in Access credentials in
Application Application Access cloud Connect from configuration Kubernetes configuration
vulnerability exploit (RCE) resources Proxy server files dashboard files
SSH server Writable volume
Exposed running inside Instance mounts on the
Dashboard container Metadata API host
Access O ur
Kubernetes
dashboard Focus
, Today
Access tiller
endpoint

SOURCE: https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/

https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/

MITRE ATT&CK® Framework for Kubernetes

ATT&CK - Adversatrial Tactics, Techniques, and Common Knowledge

t-1#/security_credentials hid Q $ » =

& C @ console.aws.amazon.com/iam/home?region=ap-so

aWS, Services v Resource Groups v [\ nathanaw v Global v Support

Identity and Access
Management (IAM) ‘

To learn more about the types of AWS credentials and how they're used, see AWS Security Credentials in AWS General Reference

~ Password
Dashboard
~ Multi-factor authentication (MFA)
v Access management
v Access keys (access key ID and secret access key)

Groups
Users Use access keys to make programmatic calls to AWS from the AWS CLI, Tools for PowerShell, the AWS SDKs, or direct AWS API calls. You can have a
Roles maximum of two access keys (active or inactive) at a time. Learn more
g Roficies Created Access Key ID Lastuseq ~ Lostused - LastUsed g, Actions
CI d % S Region Service
ou Identity providers @ W N/A N/A N/A Active Make Inactive | Delete

Credentials

C:\Users\USER>aws --version
aws-cli/2.0.30 Python/3.7.7 Windows/10 botocore/2.0.0dev34

C:\Users\USER>aws eks --region ap-southeast-1 update-kubeconfig --name nathanaw-microservices

If your cloud credentials (e.g., AWS Root User or IAM User) are
compromised, your whole Kubernetes cluster is at risk!

MITRE ATT&CK® Framework for Kubernetes

ATT&CK - Adversarial Tactics, Techniques, and Common Knowledge

Kubeconfig
File

C:\minikube>kubectl config view

-authority-data: REDACTED
192.168.99.100:8443
-160:8443

-authority-data: REDACTED
99.106:8443

: REDACTED
09.1067:8443

: true
99.109:8443

ficate-authority: C:\Users\USER\.minikube\ca.crt
server: https://192.168.99.101:8443
name: minikube
contexts:
- context:

cluster: 192-168-99-100:8

namespace: blockchai

user: developer/192-168-99-100:8443
kchain/192-168-99-100:8443/developer

name: minikube

- context:

cluster: 192-168-99

namespace: myp 5

user: developer/192-168-99-107
name: shift

- context:

A kubeconfig file is a file
used to configure access
to Kubernetes when used
in conjunction with the
kubectl command line tool
(or other clients).

MITRE ATT&CK® Framework for Kubernetes

ATT&CK - Adversatrial Tactics, Techniques, and Common Knowledge

Execution
into
Container

Attackers who have permissions, can run malicious commands in containers in the
cluster using exec command (“kubectl exec”). In this method, attackers can use
legitimate images, such as an OS image (e.g., Ubuntu) as a backdoor container, and
run their malicious code remotely by usmg “kubectl exec’.

& D> C ® 1270015 namespaces system/services/http:kubemetes-dashboard:/proxy/#!/overview?namespace=default * 0 $ » 0 §

Demo kubernetes Q Ssearch + CREATE

(Deploy Golang [
+ Nginx) on K8S | °~ o

Namespaces

Nodes Workloads Statuses

Persistent Volumes

Roles

Storage Classes
100.00% 100.00% 100.00%

default ~ Deployments Pods Replica Sets

Overyie
192.168.99.104:30195 w Qo Y G

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

MITRE ATT&CK® Framework for Kubernetes

ATT&CK - Adversatrial Tactics, Techniques, and Common Knowledge

SSH server running inside container SSH server that is running inside a container may be
used by attackers. If attackers gain valid credentials to a container, whether by brute force
attempts or by other methods (such as phishing), they can use it to get remote access to the
container by SSH.

SSH Server
Running
inside
Container

In Kubernetes, administrators should limit service exposure and apply Kubernetes Network
Policies to restrict network traffic and prevent unintended access to a container that is
running an SSH server. Pod configurations should also be hardened to prevent SSH
servers from being added at runtime.

SOURCE: https://www.stackrox.com/post/2020/07/protecting-against-kubernetes-threats-chapter-2-execution/

https://www.stackrox.com/post/2020/07/protecting-against-kubernetes-threats-chapter-2-execution/

MITRE ATT&CK® Framework for Kubernetes (2/3)

Access
Kubernetes
Dashboard

kubernetes

Cluster
Namespaces
Nodes
Persistent Volumes
Roles

Storage Classes

default ~

Overview

Workloads
Cron Jobs
Daemon Sets

Deployments

Jobs

Workloads

Q search

Workloads Statuses

<« C @ 127.0.0.1:53671/api/v1/namespaces/kube-system/services/http:kubemetes-dashboard:/proxy/#!/overview?namespace=default

* oves»x0

+ CREATE

100.00% 100.00% 100.00%
Pod Renlica Set
kubernetes Q search + CREATE
Cluster
Pods =
Namespaces
Nodes Name 2 Status 4 start: Age &
Persistent Volumes -
@ nginxapp-55595cd5d5-twec minikube Running 9 minutes =
Roles
s o @ gohello-world-599b7f7b8c-9pfdn minikube Running 0 13minutes =
orage Classes
@ gohello-world-599b7f7b8c-k2sln minikube Running 0 13 minutes =
A @ go-hello-world-599b7f7b8c-pféwy minikube Running 0 13minutes =
Overview . .
Replica Sets =
Workloads
Age + age
Cron Jobs
pod-template-hash: 1115178
Dasrnon Sats @ nginxapp-55595cd5d5 1/1 9 minutes nginx:latest =
run: nginxapp
Deployments
app: go-hello-world
Uoba @ gohello-world-599b7f7b8c 3/3 13 minutes callicoder/go-hello-world:1.00 =
pod-template-hash: 1556393
Pods

SOURCE: http://127.0.0.1:62823/api/v1/namespaces/kube-system/services/http:kubernetes-dashboard:/proxy/

The Kubernetes
dashboard is a
web-based Ul that is used
for monitoring and
managing the Kubernetes
cluster. The dashboard
allows users to perform
actions in the cluster
using its service account
(kubernetes-dashboard)
with the permissions that
are determined by the
binding or cluster-binding
for this service account.
Attackers who gain
access to a container in
the cluster, can use its
network access to the
dashboard pod.
Consequently, attackers
may retrieve information
about the various
resources in the cluster
using the dashboard’s
identity.

http://127.0.0.1:62823/api/v1/namespaces/kube-system/services/http:kubernetes-dashboard:/proxy/

How to Secure Your K8S - The Cloud Native 4Cs

Code

Container

Cluster

Cloud/Co-Lo/Corporate

Datacenter

1. The 4C's of Cloud
Native security. You can
think about security in
layers.

2. The 4C's of Cloud
Native security are
Cloud, Clusters,
Containers, and Code.

Container

Code Cluster

https://kubernetes.io/docs/concepts/security/overview/

https://kubernetes.io/docs/concepts/security/overview/

How to Secure Your K8S Infrastructure e

Area of Concern for Kubernetes

Infrastructure

Network access to API Server
(Control plane)

Recommendation ture)

All access to the Kubernetes control plane is not allowed publicly on
the internet and is controlled by network access control lists restricted
to the set of IP addresses needed to administer the cluster.

Network access to Nodes
(nodes)

Nodes should be configured to only accept connections (via network

access control lists)from the control plane on the specified ports, and
accept connections for services in Kubernetes of type NodePort and

LoadBalancer. If possible, these nodes should not be exposed on the
public internet entirely.

Kubernetes access to Cloud
Provider API

Each cloud provider needs to grant a different set of permissions to
the Kubernetes control plane and nodes. It is best to provide the
cluster with cloud provider access that follows the principle of least
privilege for the resources it needs to administer. The Kops
documentation provides information about IAM policies and roles.

SOURCE: https://kubernetes.io/docs/concepts/security/overview!/;

https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/

https://kubernetes.io/docs/concepts/security/overview/
https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/

How to Secure Your K8S Infrastructure Cloud

(Infrastruc
ture)

Area of Concern for Kubernetes
Infrastructure

Recommendation

Access to etcd (the datastore of Kubernetes) should be limited to the

Access to etcd control plane only. Depending on your configuration, you should
attempt to use etcd over TLS. More information can be found in the
etcd documentation.

etcd Encryption Wherever possible it's a good practice to encrypt all drives at rest, but
since etcd holds the state of the entire cluster (including Secrets) its
disk should especially be encrypted at rest.

SOURCE: https://kubernetes.io/docs/concepts/security/overview!/;
https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/

https://kubernetes.io/docs/concepts/security/overview/
https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/

How to Secure Your K8S Cluster Cluster

Area of Concern for Kubernetes
Infrastructure

RBAC Authorization (Access to
the Kubernetes API)

Recommendation

Role-based access control (RBAC) is a method of regulating access
to computer or network resources based on the roles of individual
users within your organization.

RBAC authorization uses the rbac.authorization.k8s.io APl group to
drive authorization decisions, allowing you to dynamically configure
policies through the Kubernetes API.

Authentication

Users access the API using kubectl, client libraries, or by making
REST requests. Both human users and Kubernetes service
accounts can be authorized for API access.

https://kubernetes.io/docs/reference/access-authn-authz/controlling-
access/

SOURCE: https://kubernetes.io/docs/concepts/security/overview/;

https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/ ;

https://kubernetes.io/docs/reference/access-authn-authz/rbac/

https://kubernetes.io/docs/concepts/security/overview/
https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

How to Secure Your K8S Cluster Cluster

Area of Concern for Kubernetes Recommendation

Infrastructure

https://kubernetes.io/docs/concepts/configuration/secret/
Application secrets management https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
(and encrypting them in etcd at rest)

Pod Security Policies https://kubernetes.io/docs/concepts/policy/pod-security-policy/

Quality of Service (and Cluster https://kubernetes.io/docs/tasks/configure-pod-container/quali
Network Policies https://kubernetes.io/docs/concepts/services-networking/netw
ork-policies/

TLS For Kubernetes Ingress ztltgs://kubernetes.|o/docs/concepts/sewlces-networklng/mgress/

SOURCE: https://kubernetes.io/docs/concepts/security/overview!/;
https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/

https://kubernetes.io/docs/concepts/security/overview/
https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/

ample AWS EKS Cluster Configuration

& C @ ap-southeast-1.console.aws.amazon.com/eks/home?region=ap-southeast-1#/cluster-create
QWS Services v Resource Groups v *
Amazon Container X Ste
p1 .
Services e skt Configure cluster
Amazon ECS Step 2 Cluster configuration info
Clusters
Task definitions Name - Not editable after creation.
Step 3 Enter a unique name for this cluster
nathanaw-microservices-owasp-meetup
Amazon EKS
Step 4 Kubernetes version Info
Clusters Select the Kubernetes version for this
1.16 v
Amazon ECR

Cluster Service Role Info
Select the IAM Role
To create a ne

Not editable ofter creatio
to allow the Kubernetes control plai
, go to the 1AM console

Repositories

to manage AWS resources on your behalf.

developer

Secrets encryption info

These properties cannot be changed after the cluster is created.

@ Enable envelope encryption of Kubernetes secrets using KMS
Enable envelope encryption to provide an additiona

of encryption for your Kubernetes secrets.

KMS Key

ey to use for envelope encryption of Kubernetes secrets
go to the KMS console.

nathanaw v

-

a#x ove»x:

Singapore ¥ Support v

service that helps an
administrator securely control
access to AWS resources. An IAM
role is an identity within your
AWS account that has specific
permissions. You can use roles to
delegate access to users,
applications, or services that do
not normally have access to your
AWS resources.

An Amazon EKS cluster has
multiple 1AM roles that define
access to resources.

¢ The Cluster Service Role
allows the Kubernetes cluster
managed by Amazon EKS to
make calls to other AWS
services on your behalf.

¢ The Amazon EKS service-
linked role includes the
permissions that EKS requires
to create and manage
clusters. This role is created
for you automatically during
cluster creation.

Learn more [4

Create a Cluster Service Role

e D ST .

https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/

https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/

AWS EKS Security Best Practices

EKS Best Practices Guide for .
Security 1. Controlling Access to EKS Clusters
i 2. Don't use a service account token for authentication
ity o Access Memsgement 3. Employ least privileged access to AWS Resources
RE———— 4. Use IAM Roles when multiple users need identical access to the
h‘.ulti-tenanéy Cluster
s ot 5. Employ least privileged access when creating RoleBindings and
etectuv rois . .
A— ClusterRoleBindings
€IWOrK Security ' .
o 6. Make the EKS Cluster Endpoint private
Data Encryption and Secrets . . .
A— 7. Restrict the contamerg that can run as privileged
B SEchy 8. Do not run processes in containers as root . .
s 9. Never run Docker in Docker or mount the socket in the container
, o 10. Create minimal images
Regulatory Compliance 11 And
Incident Response and Forensics) na many more...
Image Security

SOURCE: https://aws.qithub.io/aws-eks-best-practices/iam/

https://aws.github.io/aws-eks-best-practices/iam/

How to Secure Your K8S Container

Area of Concern for Kubernetes
Infrastructure

Container

Recommendation

Container Vulnerability Scanning and

OS Dependency Security As part of an image build step, you should scan your containers

for known vulnerabilities.

Image Signing and Enforcement Sign container images to maintain a system of trust for the
content of your containers.

When constructing containers, consult your documentation for
Disallow privileged users how to create users inside of the containers that have the least

level of operating system privilege necessary in order to carry out
the goal of the container

As mentioned, containers that run as privileged inherit all of the
Linux capabilities assigned to root on the host. Seldom do
containers need these types of privileges to function properly.
You can reject pods with containers configured to run as
privileged by creating a pod security policy.

Restrict the containers that can run as
privileged

Container Runtime Security - Image Scanning

Image scanning: The Docker security scanning process typically includes:

» Checking the software packages, binaries, libraries, operative system files and more

Compromised
Images in
Registry

against well known vulnerabilities databases. Some Docker scanning tools have a
repository containing the scanning results for common Docker images. These tools can be
used as a cache to speed up the process.

» Analyzing the Dockerfile and image metadata to detect security sensitive configurations
like running as privileged (root) user, exposing insecure ports, using based images tagged
with “latest” rather than specific versions for full traceability, user credentials, etc.

 User defined policies, or any set of requirements that you want to check for every image.
This includes software packages blacklists, base images whitelists, whether a SUID file has
been set, etc.

@ Cla 18 CoreOS/Clair: An open source project for the static
analysis of vulnerabilities in application containers
A Container Image Security Analyzer by CoreOS (Curl’ently inClUdinq aDpC/Rkt and Docker).

Restrict the containers that can run as
privileged - Rule:MustRunAsNonRoot

Container

- ALL
AlLlow core volume types.
volumes:
- 'configMap’
- 'emptyDir’
- 'projected’
- 'secret’
- 'downwardAPI'
Assume that persistentVolumes set up by the cluster admin are safe to use.
- 'persistentVolumeClaim’
hostNetwork: false
hostIPC: false
hostPID: false

Require the container to run without root privileges.

seLinux:

This policy assumes the nodes are using AppArmor rather than SELinux.
rule: 'RunAsAny’
supplementalGroups:
rule: 'MustRunAs'
ranges:
Forbid adding the root group.
- min: 1

w

max: 6553

fsGroup:

https://kubernetes.io/docs/concepts/po

licy/pod-security-policy/#users-and-gr

oups

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups

How to Secure Your Application Code on Code

K8S

Access over TLS only

If your code needs to communicate by TCP, perform a TLS handshake with the
client ahead of time. With the exception of a few cases, encrypt everything in
transit. Going one step further, it's a good idea to encrypt network traffic
between services. This can be done through a process known as mutual or
mTLS which performs a two sided verification of communication between two

certificate holding services.

Limiting port ranges of
communication

This recommendation may be a bit self-explanatory, but wherever possible
you should only expose the ports on your service that are absolutely essential
for communication or metric gathering.

Static Code Analysis

SOURCE: https://kubernetes.io/docs/concepts/security/overview/

Most languages provide a way for a snippet of code to be analyzed for any
potentially unsafe coding practices. Whenever possible you should perform
checks using automated tooling that can scan codebases for common
security errors. Some of the tools can be found at:
https://owasp.org/www-community/Source_Code_Analysis_Tools

Practice Writing Secure By Design
Code!

https://kubernetes.io/docs/concepts/security/overview/

Service Mesh - Definition

“A service mesh, like the open source project Istio, is a way to control how
different parts of an application share data with one another. Unlike other systems
for managing this communication, a service mesh is a dedicated infrastructure
layer built right into an app.” - Red Hat

“A service mesh is a configurable, low-latency infrastructure layer designed to
handle a high volume of network-based interprocess communication among
application infrastructure services using application programming interfaces
(APIs).” - Nginx

Service Mesh To Help Improve Security Posture

Traffic observability that Service
mesh offers, combined with
external traffic profiling and analysis
tools, enables security-related
traffic auditing and monitoring for
detection and investigation of
network behavior anomalies.

Service mesh traffic can be
automatically encrypted
with mutual endpoint
authentication, using
mTLS.

Fine-grained role-based
access control at the
application layer network
protocol can be used for
micro-segmentation, further
enhancing users’ abilities to
limit which services interact
and in what ways.

Authenticates workloads’ identities
and issues and manages
certificates for them used in
creating the mesh connectivity.

SOURCE: nttps://www.alcide.io/service-mesh-security/

Configurable authentication policies
and secure naming information
ensure traffic authorization at the
transport layer.

https://www.alcide.io/service-mesh-security/

Service Mesh - Linkerd and Istio

" LINKERD

Namespaces

Namespaces HTTP metrics

& Control Plane
Nesvwsosce T fesle
DEFAULT » 1042 078 ~
— 1 Corre
2
o Daemon Sets uba sl 048 articles o i
Q Deployments | oty o - HTTP ratfie (requests per sccond
N Total whuccen Warror
@ Jobs boer) 99 100 30% »
~ Dade

Service Mesh - Automatic mTLS

A LINKERD

>

Linkerd 2.x v

Overview

Getting Started

Features

HTTR, HTTP/2, and gRPC
Proxying

DOCS COMMUNITY BLOG ENTERPRISE FAQ) GITHUB

Automatic mTLS

By default, Linkerd automatically enables mutual Transport Layer Security (mTLS) for most
HTTP-based communication between meshed pods, by establishing and authenticating
secure, private TLS connections between Linkerd proxies. This means that Linkerd can add

authenticated, encrypted communication to your application with very little work on your part

And because the Linkerd control plane also runs on the data plane, this means that
communication between Linkerd's control plane components are also automatically secured
via mTLS

SOURCE: hitps://linkerd.io/

SOURCE: hitps://istio.io/

Service Mesh is not a panacea nor silver
bullet to all the potential security ills and

pitfalls. Vigilance and Defense-in-Depth

Approach is still needed!

@ Service A @ Service B
HTTP/1.1, HTTP/2,
gRPC or TCP -
with or without
mTLS
O Proxy » (O Proxy

Policy checks,
telemetry "

Config data | - TLS certs to
to proxies| _--~ <..__ | proxies

) Pilot) Mixer @ citadel

Control Plane API

A
'

https://linkerd.io/
https://istio.io/

What’s Next + Final Words

e Multi Cloud Reality - K8S The Swiss Cheese Model /
Clusters spanning across Defense-in-Depth Approach Sorely
multi-cloud Needed - No one size fits all

- “Know all your assets, well. Know
them well. (especially all the
component in the asset. E.g., the
ETCD in K8S, Golang) and secure

- em’ all!
H . N
vafir S - “Secure by Design” Application:
J W r Secure code is the best code.
—e Loss not Secure by design means that security
prevented . . :
A A A is baked into your software design
Losses prevented .
from the beginning.

Feel reach out to me @ https://www.linkedin.com/in/awnathan

e Currently an AppDevSec Digital Solutions Architect and a Full-Stack Developer in the Financial Services
Industry (FSI)
o First a Full-Stack Developer, then a Solutions Architect
o Previously worked in a local bank as a Full-Stack Blockchain Engineer
o Have Designed, Built, Deployed and Operated > 88 Unique Polyglot Based Production Grade
Microservices (Micro Frontends, Backend for Frontends, Backends) over last 3 years
e Specialties around API, Microservices that enables a Seamless & Frictionless Customer Journey
Experience (CJX)
o On “Hybrid-Multi” Cloud Native Platforms
o On API, Microservices Security, Container Runtime Security and MITRE ATT&CK® for
Kubernetes(K8S)

e Technology Stack: Golang, React, Kafka, Spring Boot, NodeJS, Apigee, Kong, Zuul, GraphQL, Azure
Kubernetes Service (AKS), Elastic Kubernetes Service (EKS), Openshift, Service Mesh (Istio, Linkerd),
Cloud Foundry and many more...

e Building Scalable, Secure and Robust APls and Microservices is my passion!

e htitps://www.linkedin.com/in/awnathan

e Opinions/views expressed in the talk are solely my own and do not express the views or opinions of my
employer.

https://www.linkedin.com/in/awnathan
https://www.linkedin.com/in/awnathan

References/Sources

Oreilly - Container Security: Fundamental Technology Concepts that Protect
Containerized Applications

https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/

https://nvipubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204.pdf

https://skyao.qitbooks.io/microservice-collection/content/master/Andreas-Schroed
er/static/microservice-architectures.pdf

https://owasp.org/www-chapter-singapore/assets/presos/Securing your APIs - O
WASP API Top 10 2019. Real-life Case.pdf

https://aws.qithub.io/aws-eks-best-practices/iam/

https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204.pdf
https://skyao.gitbooks.io/microservice-collection/content/master/Andreas-Schroeder/static/microservice-architectures.pdf
https://skyao.gitbooks.io/microservice-collection/content/master/Andreas-Schroeder/static/microservice-architectures.pdf
https://owasp.org/www-chapter-singapore/assets/presos/Securing_your_APIs_-_OWASP_API_Top_10_2019,_Real-life_Case.pdf
https://owasp.org/www-chapter-singapore/assets/presos/Securing_your_APIs_-_OWASP_API_Top_10_2019,_Real-life_Case.pdf
https://aws.github.io/aws-eks-best-practices/iam/

References/Sources

https://developer.okta.com/blog/2020/03/23/microservice-security-patterns

https://www.infoq.com/podcasts/web-security-hack-anatomy/

https://developer.okta.com/blog/2020/03/23/microservice-security-patterns
https://www.infoq.com/podcasts/web-security-hack-anatomy/

