

OWASP Meetup Zero Trust in API Security

James Jinwon Lee / Security Solution Architect, F5 APCJ

What Problems Are We Trying to Solve in Zero Trust?

Enter Zero Trust

ELIMINATES THE IDEA OF A TRUSTED NETWORK INSIDE A DEFINED PERIMETER

"A way to think about cyberthreats is to assume you have already been compromised; you simply don't know it yet."

- Forrester®

THE ZERO TRUST PARADIGM

Assume attackers are already on the network and lurking

No environment is any more trustworthy than any other

Assume no implicit trust

Continually analyze and evaluate risks

Mitigate risks

US NIST Technical Requirements of Zero Trust

Preventing Lateral Movement

NIST Special Publication 800-207	
Zero Trust Architecture	
Scott Rose Oliver Borchert Stu Mitchell Sean Connelly	
This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-207	"A zero trust architecture (ZTA) is an enterprise cybersecurity architecture that is based on zero trust principles and <u>designed to</u> prevent data breaches and limit internal lateral movement"
National Institute of Standards and Technology U.S. Department of Commerce	NIST 800-207 Report (https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pc

Singapore Government Zero Trust - GovZTA

Scope

The GovZTA provides an overarching Enterprise Security Architecture to guide the coherent development of applications, infrastructure, and cybersecurity controls. It covers all aspects of an agency's digital estate (identity, infrastructure, systems, and applications) to ensure that trust is enforced and established under appropriate perimeters.

Users to Services (and vice versa)

ENFORCE & ESTABLISH TRUST:

Only the **right people** have the **right access** to the **right services** from the **right devices**, under the **right circumstances**.

User-To-App or N/S Traffic

Services to Services

ENFORCE & ESTABLISH TRUST:

Only the **right service identity** has the **right access** to the **right services and data** using the **right secret key**, under the **right circumstances**.

App-To-App or EW Traffic

Singapore Government Zero Trust Best Practice

Control Points	GovZTA Principles	Desired Outcomes				
STRENGTHENING ARCHITECTURE ACCESS	Apply Least Privilege and Enforce Access Control	Users, devices, and applications are assigned groupings and specific permissions, enforcing the principle of least privilege within an identity-based trust system. Trust is actively verified using a standardised enforcement point as well as dynamic access policies to authenticate and authorise access to resources on a per-request basis.				
SECURING APPLICATION SERVICES	Limit Lateral Movement	Blast radiuses of breaches are minimised by micro-segmenting the network, isolating applications, and logically segregating data.				
ENHANCING OPERATIONAL READINESS	Integrate Security Automation & Orchestration	Automated process workflows are used to achieve the continuous integration and continuous delivery of services, which are built on repeatable baselines.				
	Enhance Detection & Response	Aggregate logs across the platform, host, network, application, and data layers to analyse security information and application performance.				

Technical Requirements of Zero Trust

Preventing Lateral Movement

- **Pass-the-hash:** In this technique, an attacker steals the password hash from a system and then uses that hash to authenticate to other systems on the network.
- Pass-the-ticket: The attacker steals a Kerberos ticket from a system and then uses that ticket to authenticate to other systems on the network, like <u>active directories</u>. Pass-The-Ticket attacks, such as a Golden Ticket attack or a Silver Ticket Attack, are powerful techniques adversaries employ for post-exploitation lateral movements and privilege escalation. Using these techniques, attackers can gain unlimited access to any endpoint on the network or service, potentially causing catastrophic consequences.
- Exploiting vulnerabilities: An attacker exploits vulnerabilities in systems to gain access and then uses that access to move laterally within the network.
- Using stolen credentials: The attacker steals valid credentials from a system and then uses those credentials to authenticate to other systems on the network.

Source: SentinelOne Website

Lateral movement attack

What are the solutions?

Common M

Is it easy to detect usi

PROFILE
Chanam Park

Seoul, South Korea

<

"...Once you access the internal network, you need to Holly Hacker explore the inside of an organization's network to

teral many interesting things in the chier paise

network. Sou have

many security solutions to prevent lateral movement

stracks, but in reality, the internal new ork is much

more vulneranc than you think ...

Chanam Park - Whitehacker

Common Misunderstandings

Is it easy to detect using the latest technologies?

		HOSTS ENTERPRISE SEARCH ACQU	JISITIONS INDICATORS	ADMIN ¥	_				Hi, admin +	Help & Support	t •
	Data Acquisitions	WIN-QMUAUJGPC3F > Timeline									Θ
	Agent Events	All Fields * watchdog exe	O 2 of 23	SCDD					361,324	Rows	
	Reg Key Events			•			noond				
Endpoint L	Ipv4 Network Events	Tag Comment	Timestamp 1	Field madecoaucvencs/ oenerated	Detail2	Deta		tail3	THEFT	A SPANKUII	
	Image Load Events		2017-07-10 07:41:37Z	imageLoadEvents/Generated	Extension: dll	Full Path	c:\Windows\System32\msctf.dll	Username:	WIN-QMUALUG	C3F\Victim	
and Resno	Ons Lookup Events		2017-07-10 07:41:37Z	imageLoadEvents/Generated	Extension: dll	Full Path	c C:\Windows\FireEye\AppMonitorDII_00.dll	Username:	WIN-QMUAUJG	C3F\Victim	
and heopo	File Write Events		2017-07-10 07:41:37Z	imageLoadEvents/Generated	Extension: dll	Full Path	c C:\Windows\System32\dbghelp.dll	Username:	WIN-QMUAUJG	C3F\Victim	
	Process Events		2017-07-10 07:41:372	imageLoadEvents/Generated	Extension: dl	Full Path	c C:\Windows\System32\psapi.dll	Username:	WIN-QMUAUJG	C3F\Victim	
	Url Monitor Events		2017-07-10 07:41:372	imageLoadEvents/Generated	Extension: dll	Full Path	c C:\Windows\System32\crypt32.dll	Username:	WIN-QMUAUJG	C3F\Victim	
	Address Notification Events		2017-07-10 07:41:37Z	imageLoadEvents/Generated	Extension: dll	Full Path	c C:\Windows\System32\msasn1.dll	Username:	WIN-QMUAUJG	C3F\Victim	
	Agent Events		2017-07-10 07:41:37Z	imageLoadEvents/Generated	Extension: dll	Full Path	c C:\Windows\System32\version.dll	Username:	WIN-QMUAUJG	C3F\Victim	
	Persistence		2017-07-10 07:41:372	imageLoadEvents/Generated	Extension: dll	Full Path	c C:\Windows\System32\shell32.dll	Username:	WIN-QMUAUJG	C3F\Victim	
	Services		2017-07-10 07:41:372	imageLoadEvents/Generated	Extension: dll	Full Path	c C:\Windows\System32\shlwapi.dll	Username:	WIN-QMUAUJG	C3F\Victim	
	Ports		2017-07-10 07:41:37Z	fileWriteEvents/Generated	Text Written: .%	Full Path	c C:\Windows\appcompat\Programs\RecentFileCac	. Writes: 4	I		
	Linera		2017-07-10 07:41:372	imageLoadEvents/Generated	Extension: dll	Full Path	c C:\Users\Victim\7z.dll	Username:	WIN-QMUAUJG	C3F\Victim	
	Tasks		2017-07-10 07:41:372	hleWriteEvents/Generated	Text Written: 7z'H	H Full Patt	c C:\Users\Victim\smb.7z	Writes: 1			
	- Testa		2017-07-10 07:41:372	fileWriteEvents/Generated	Text Written: M2		c C:\Users\Victim\scan.exe	Writes: 1			
	Processes		2017-07-10 07:41:37Z	fileWriteEvents/Generated	Text Written: M2		c C:\Users\Victim\uploader_demo.exe	Writes: 1			
	Prefetch		2017-07-10 07:41:37Z	fileWriteEvents/Generated	Text Written: MZ		c C:\Users\Victim\watchdog.exe	Writes: 4	1		
	 Registry 		2017-07-10 07:41:372	File System/Created	MD5: 944eb6397853	3ae90d990c3c Full Path	c c:\Users\Victim\watchdog.exe	Username:	WIN-QMUAUJG	C3F\Victim	
	Disks		2017-07-10 07:41:37Z	File System/Accessed	MD5: 944eb6397853	3ae90d990c3c Full Path	c c:\Users\Victim\watchdog.exe	Username:	WIN-QMUAUJG	C3F\Victim	
	Volumes		2017-07-10 07:41:37Z	File System/Changed	MD5: 944eb6397853	3ae90d990c3c Full Path	c c:\Users\Victim\watchdog.exe	Username:	WIN-QMUAUJG	C3F\Victim	
	Browser Url History		2017-07-10 07:41:37Z	Persistence/File Created	Registry Path: HKEY_I	LOCAL_MACH Persiste	nce Type: Service	File Path:	c:\Users\Victim	watchdog.exi	ie .
	File Download History Item		2017-07-10 07:41:372	Persistence/File Accessed	Registry Path: HKEY_I	LOCAL_MACHI Persiste	nce Type: Service	File Path:	c:\Users\Victim	watchdog.ex	ie .
	 DNS Entries 		2017-07-10 07:41:372	Persistence/File Changed	Registry Path: HKEY_I	LOCAL_MACHI Persiste	nce Type: Service	File Path:	c:\Users\Victim	watchdog.ex	.e
	Route Entries		2017-07-10 07:41:38Z	imageLoadEvents/Generated	Extension: dll	Full Path	c:\Windows\System32\version.dll	Username:	NT AUTHORITY	SYSTEM	
	ARP Entries		2017-07-10 07:41:44Z	imageLoadEvents/Generated	Extension: dll	Full Path	c C:\Windows\System32\version.dll	Username:	NT AUTHORITY	SYSTEM	
	 System Information 		2017-07-10 07:41:50Z	imageLoadEvents/Generated	Extension: dll	Full Path	c C:\Windows\System32\version.dll	Username:	NT AUTHORITY	SYSTEM	
	Timeline		2017-07-10 07:41:532	processEvents/Generated	Parent PID: 4628	Process	Name: xagt.exe	Path: C:V	Program Files\Fin	Eye\xagt\xa	ad -
			2017-07-10 07:41:532	processEvents/Generated	Parent PID: 4628	Process	Name: xagt.exe	Path: C:\	Program Files\Fin	Eye\xagt\xa	igta
			2017-07-10 07:41:53Z	processEvents/Start Time	Parent PID: 4628	Process	Name: xagt.exe	Path: C:V	Program Files\Fin	Eye\xagt\xa	igt.
			2017-07-10 07:41:532	processEvents/Start Time	Parent PID: 4628	Process	Name: xagt.exe	Path: C:\	Program Files\Fin	Eye\xagt\xa	igt.i
			2017-07-10 07:41:53Z	imageLoadEvents/Generated	Extension: dll	Full Path	c C:\SystemRoot\System32\ntdll.dll	Username:	NT AUTHORITY	SYSTEM	
			2017-07-10 07:41:53Z	imageLoadEvents/Generated	Extension: dll	Full Path	c C:\Windows\System32\kernel32.dll	Username:	NT AUTHORITY	SYSTEM	
			2017-07-10 07:41:53Z	imageLoadEvents/Generated	Extension: dll	Full Path	c C:\Windows\System32\KernelBase.dll	Username:	NT AUTHORITY	SYSTEM	
			2017-07-10 07:41:532	imageLoadEvents/Generated	Extension: dll	Full Path	c C:\Windows\System32\gdi32.dll	Username:	NT AUTHORITY	SYSTEM	
			2017-07-10 07:41:532	imageLoadEvents/Generated	Extension: dll	Full Path	c C:\Windows\System32\user32.dll	Username:	NT AUTHORITY	SYSTEM	
2022 F5			2017-07-10 07:41:532	imageLoadEvents/Generated	Extension: dll	Full Path	c C:\Windows\System32\lpk.dll	Username:	NT AUTHORITY	SYSTEM	

F

X-Segmentation

Rise of Micro-Segmentation

Source: https://support.huawei.com/enterprise/fr/doc/EDOC1100196735

Current Product Offering of X-Segmentation for Zero Trust

Network Segmentation

Current Product Offering of X-Segmentation for Zero Trust

Micro-Segmentation

Micro-segmentation

Different Segmentations for Zero Trust App Access

Network Fabric

- Requires SDN controller (e.g. Cisco ACI, Arista CloudVision, etc)
- Not supported on public clouds
- Requires specific network
 implementation
- It may increase the latency or cause a bottleneck.

Agent-based

- Most effective technical option for the microsegmentation
- Agent fatigue in many organizations
- Increase the operational costs

Hypervisor

- Considered easy to implement
- Not supported on public clouds and traditional DC
- Supported for VMs only
- It may increase the latency or cause a bottleneck.

Network-based

- Easy to implement
- Supported all deployment models
- Requires small IP-based subnets
- Increase the complexity of the network design

Challenges of Current Product Offering of Micro Segmentation

Challenges of Micro Segmentation in Real World

Complexity	 Requires deep knowledge of networks, applications, and risk level of enterprise assets. Need to manage all different security policies on a 'micro-segment' basis.
Dependency	 It sometimes has a dependency on the solution of the 'Micro Segmentation'. For example, the 'Network fabric' method is normally not supported in a public cloud.
Limited Access Control	 Most micro-segmentation security policy uses layer-4 level attributes. (Except the agent-basis method.) Requires SSL/TLS termination(or decryption) to inspect the encrypted traffic. (Agent-basis naturally can inspect this types of traffic)
Agent fatigue	 While the agent-basis method provides much more benefits than other methods, it introduces operational complexity. Many organizations have an 'agent-fatigue' issue.

API Micro Segmentation

US DoD:

Zero Trust

Reference

Architecture

Department of Defense (DoD) Zero Trust Reference Architecture

> Version 2.0 July 2022

Prepared by the Defense Information Systems Agency (DISA) and National Security Agency (NSA) Zero Trust Engineering Team

July 2022

datacenter resources and cloud services accessible via the Internet. All requests for access will be highly scrutinized using continuous multi-factor authentication and the concent of least-

Figure 8 Zero Trust Infrastructure, Workload and Data Capability Taxonomy (CV-2)

Network-based Segmentation

Application-based Segmentation

Micro Perimeters to "minimize or prevent lateral movement" (NIST)

Prevent and Curtail Lateral Movement
Explicitly Allow Authorizations (Deny by Default)

Figure 22 East-West Segmentation (OV-1)

The ZT-enabling Infrastructur Degregate of Network and Environments resources Pillar nodes of travel among the enterprise. This also cloud resources. Controls built around capabilities. A macro and micro segmentati isolating specific workloads as long as the wc for not only interconnection between req requirements of connection for Software Def

The Securing Application and Workload ag surround the Workloads Pillar. These capab data to end users. These capabilities aim to practices, and segment the application into d into this zone are highly scrutinized and brc convergence to a standardization of applicat changes and updates.

The Securing Data aggregate capability incl These capabilities are the closest to the di securing data whether it be tagged data, encrypting of sensitive data. Securing Data information regardless of the effectiveness c

- Prevent and Curtail Lateral Movement
- Explicitly Allow Authorizations (Denv by Default)

Security states of previous deployments of application and server stacks have had issues involving implicit trust in communication between systems. This trust has allowed malicious users and devices the ability to traverse through the environment with relative ease. Once through the perimeter controls malicious users and software can move laterally across to infect or attack systems and data within the area of influence. ZT aims to enhance the security posture of static DMZ network configuration by only allowing the specific communication that is required for the applications to work and implement ever evolving controls. Micro-segmentation will require communication between devices to be limited with just enough access to complete the intended task of communication between servers, devices and applications. Communication will be controlled not only at the network level between hosts, but also from process to process and in the application stack through API Micro-segmentation. Additional Authentication and Authorization will be part of each step of the process towards the data layer.

July 2022

datacenter resources and cloud services accessible via the Internet. All requests for access will be highly scrutinized using continuous multi-factor authentication and the concept of least-privilege. In this model, formerly external users do not incur additional latency by hair-pinning through a VPN.

4.11 East-West Segmentation (OV-1)

Micro Firewall vs Micro Proxy Approach

Figure 36 SoS Micro Segmentation (SV-1)

Micro Firewall vs Micro Proxy Approach

Figure 36 SoS Micro Segmentation (SV-1)

Learning from Real-World Case

Data Breach happens in Cloudflare

Brief Analysis of the Breach

Nation-state actor used recent Okta compromises to hack into Cloudflare systems

News

05 Feb 2024 · 4 mins

Data Breach Hacking

The hack, which used stolen tokens and credentials, was able to acces amount of source code" before being thwarted.

02/02/2024

5,000 Service Accounts Used for Massive App-to-App Access

Everything was begun from the App-to-App Access

CLOUDFLARE

5,000 Service Accounts Used for Massive App-to-App Access

Everything was begun from the App-to-App Access

Real World Breach Case by the 'East-West App-to-App' Access

The Importance of the 'East-West App-to-App' Protection

November 15 16:28:38 - threat actor gains access to Atlassian services

The threat actor successfully accessed Atlassian Jira and Confluence on November 15

using the Moveworks service token to authenticate through our gateway, and then they

used the Smartsheet service account to gain access to the Atlassian suite. The next

ady they began looking for information about the configuration and management of our

global network, and accessed various Jira tickets.

Real World Breach Case by the 'East-West App-to-App' Access

The Importance of the 'East-West App-to-App' Protection

Zero Trust API Access with API Micro-Segmentation

API Microsegmentation – Micro Proxy Control

API Micro-Segmentation Flow Diagram

API Microsegmentation – Behavioral Detection

API Micro-Segmentation Flow Diagram

Zero Trust API Access with API Micro-Segmentation

Benefits of API Security + API Micro-segmentation

- Enhanced defense: The layered approach provides multiple layers of security, making it difficult for attackers to breach defenses.
- **Reduced attack surface**: By isolating APIs and controlling traffic flow, attackers have fewer opportunities to exploit vulnerabilities.
- Improved data protection: Sensitive data transmitted through APIs is protected by both API security controls and network segmentation.
- Faster incident response: Breaches can be contained within smaller segments, minimizing the impact and simplifying incident response.

MICROSEGMENTATION

Each API endpoint is isolated into a network segment

Granular rules control east-west traffic between API segments and other internal services.

Each API server runs within its own secure segment, minimizing the attack surface.

East-West API Microsegmentation

API Micro-Segmentation Flow Diagram

- API calls in the East-West flow can be segmented with the relevant API-group basis.
- For example, the 'Green' app in the on-prem DC can access the 'Green API endpoint' in the public cloud with the 'Read privilege'. However, the
 'Blue App' in the DC can access the same API endpoint, but can perform more actions.
- F5 XC CE can apply a different set of API security policies based on the app identity in this case.

34 ©2024 F5