
Enabling Zero Trust Architecture (ZTA) with
Least-Privilege Identity-Based Micro-segmentation using

Service Mesh and Securing Production Identity
Framework for Everyone (SPIFFE) (Demo) &

 Building Secure Software Factory (SSF) to Defend the
Digital Cloud-Native Software Supply Chain against

attacks: Helpful Cloud-Native Security Checklists and
Demo on The Update Framework

Nathan Aw
 https://www.linkedin.com/in/awnathan

nathan.mk.aw@gmail.com
https://nathanawmk.github.io/

 19 Oct 2021 (Tue)

Opinions/views expressed in the talk are solely my own and do not express the views or opinions of my employer.

 “Zero trust is not a technology, it’s not something you buy, it’s a strategy.” - Gregory Touhill, Director of the Computer Emergency
Readiness Team Carnegie Mellon University Former CISO in the Obama Administration

“Zero trust is a concept, not an action.” - KEN WESTIN, SECURITY RESEARCHER

https://www.linkedin.com/in/awnathan
mailto:nathan.mk.aw@gmail.com
https://nathanawmk.github.io/

Today’s Presentation Split into Two Major Parts (1/2):

1. Enabling Zero Trust Architecture (ZTA) with Least-Privilege,
Identity-Based Micro-segmentation using Securing
Production Identity Framework for Everyone (SPIFFE) and
Service Mesh

a. Demo on SPIFFE X.509 IDs with Envoy and Open Policy Agent
Authorization

b. Demo on Kuma Mesh → Explore Policies → mTLS (SPIFFE compatible)
i. http://localhost:5681/gui/#/mesh/all/overview

2. Building an end-to-end Secure Software Factory

a. Some Handy Principles, Checklists and Guidance
i. https://github.com/OWASP/DevSecOpsGuideline
ii. https://github.com/ukncsc/zero-trust-architecture
iii. https://github.com/ukncsc/secure-development-and-deployment

b. End-to-end Secure Software Factory - How it may look like
c. Demo on The Update Framework (TUF)

References:
https://kuma.io/
https://spiffe.io/
https://theupdateframework.io/

http://localhost:5681/gui/#/mesh/all/overview
https://github.com/OWASP/DevSecOpsGuideline
https://github.com/ukncsc/zero-trust-architecture
https://github.com/ukncsc/secure-development-and-deployment
https://kuma.io/
https://spiffe.io/
https://theupdateframework.io/

Context & Problem
Statement

Today’s Presentation Split into Two Major Parts (1/2):

Enabling
Zero
Trust with
Zero Trust
Architecture
(ZTA)

In today’s world, a single enterprise may operate several internal networks, remote offices with their
own local infrastructure, remote and/or mobile individuals, and cloud services. This complexity has
outstripped legacy methods of perimeter-based network security as there is no single, easily
identified perimeter for the enterprise. Perimeter-based network security has also been shown to be
insufficient since once attackers breach the perimeter, further lateral movement is unhindered.

Coupled with the adoption of cloud-native microservices and Event Brokers (e.g., Kafka) and the
corresponding increase of traffic flowing east-west (service to service interaction) -- instead of
north-south traffic flow (i.e., client-server interaction) -- has further reduced the relevance of
perimeter-based network security.

Zero trust (ZT) is an evolving set of cybersecurity paradigms that move defenses from static,
network-based perimeters to focus on users, assets, and resources. Zero trust assumes there is no
implicit trust granted to assets or user accounts based solely on their physical or network location
(i.e., local area networks versus the internet) or based on asset ownership (enterprise or personally
owned). Never Trust - Always Verify Paradigm is necessary in today’s new world.

Security in a cloud-native world requires an urgent fundamental rethink, a
radical pivot in approach from one that is fortress/perimeter based to Zero
Trust with Identity-based Micro-segmentation

SOURCE:https://github.com/OWASP/www-chapter-singapore/raw/master/assets/presos/Securing_Multi_cloud_Portable_Tier_Microservices_Applications_A_live_demo_on_clo
ud_native_application_security_platforms.pdf; https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf

Context: The “WHY”1

https://github.com/OWASP/www-chapter-singapore/raw/master/assets/presos/Securing_Multi_cloud_Portable_Tier_Microservices_Applications_A_live_demo_on_cloud_native_application_security_platforms.pdf
https://github.com/OWASP/www-chapter-singapore/raw/master/assets/presos/Securing_Multi_cloud_Portable_Tier_Microservices_Applications_A_live_demo_on_cloud_native_application_security_platforms.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf

Recap: Monolithic vs Microservices/Cloud-Native Architecture

User Interface

Business Logic

Data Access
Layer

 Database

Angular

 Quarkus

 Redis

ESB

User Interface

Business Logic

Data Access
Layer

 Database

Kong Zuul

React Vue

Micronaut

 PostgreSQL Mongodb

Kafka Kafka

N-Tier / Multi-Tier Architecture:
Perimeter is well-defined

Local Data Centre

Azure AWS

Local
DataCentre

Flutter

Nginx

In a hybrid, multi-cloud world, microservices *-tier
architecture, Perimeter defenses can’t stop every attack;
the attack surface is simply too wide -- the perimeter too
porous. Compartmentalization needed to contain attackers,
and the visibility and control to detect and respond.

 Spring Boot

GCP

The Challenges
“The perimeter is no longer just the physical location of the enterprise
[data center], and what lies inside the perimeter is no longer a blessed
and safe place to host personal computing devices and enterprise
applications [microservices]." https://cloud.google.com/security/beyondprod/

Context |
Problem
Statement

SOURCE: https://cloud.google.com/security/beyondprod/

Traditional Infrastructure Security Cloud-Native Security Implied Requirements for Cloud-native Security

Perimeter-based security (i.e.
firewall), with internal
communications considered
trusted.

Zero-trust security with
service-to-service communication
verified, and no implicit trust for
services in the environment.

Protection of the network at the edge
(remains applicable) and no inherent
mutual trust between services.

Fixed IPs and hardware for
certain applications.

IP address-based identity.

Services run in a known,
expected location.

Greater resource utilization, reuse,
and sharing, including of IPs and
hardware.

Services can run anywhere in the
environment, including hybrid
deployments across the public cloud and
private data centers.

Service based identity. Trusted machines running
code with known
provenance.

https://cloud.google.com/security/beyondprod/
https://cloud.google.com/security/beyondprod/

From the 2021 State of the Software Supply Chain, In 2021 the world witnessed a 650% increase in software supply
chain attacks, aimed at exploiting weaknesses in upstream open source ecosystems. For some perspective, the same
statistic was 430% in the 2020 version of the report.

Today’s Presentation Split into Two Major Parts (2/2):

Building
Secure
Software
Factory

To defend against software supply chain attacks, a trusted secure
end-to-end software factory is an imperative.

SOURCE:https://github.com/OWASP/www-chapter-singapore/raw/master/assets/presos/Securing_Multi_cloud_Portable_Tier_Microservices_Applications_A_live_demo_on_clo
ud_native_application_security_platforms.pdf; https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf ;
https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOpsReferenceDesign.pdf

Context - The “WHY”2

https://github.com/OWASP/www-chapter-singapore/raw/master/assets/presos/Securing_Multi_cloud_Portable_Tier_Microservices_Applications_A_live_demo_on_cloud_native_application_security_platforms.pdf
https://github.com/OWASP/www-chapter-singapore/raw/master/assets/presos/Securing_Multi_cloud_Portable_Tier_Microservices_Applications_A_live_demo_on_cloud_native_application_security_platforms.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOpsReferenceDesign.pdf

Who I am
Over 9 years experience as a microservices developer with a keen interest in AppSec and emerging frameworks + frontier technologies.
Currently, working in an end-user environment at a financial institution.

A firm believer and practitioner of zero trust plus advocate of secure coding practices, my passion and current focus is to build and rollout
asynchronous polyglot-based microservices that are both zero-trust, performant which can securely run anywhere (multi-cloud and/or
on-premise) and scale without limits.

Through actual hands-on setup of a Secure Software Factory (SSF), understand the importance of setting up a first-class secure software
factory that is able to industralise “shift left” practises that translates to quicker delivery of trusted and secure digital services to its customers.
More at https://nathanawmk.github.io/, https://sg.linkedin.com/in/awnathan

Previous OWASP Presentations:

https://owasp.org/www-chapter-singapore/assets/presos/Securing_your_APIs_-_OWASP_API_Top_10_2019,_Real-life_Case.pdf

https://owasp.org/www-chapter-singapore/assets/presos/Deconstructing_the_Solarwinds_Supply_Chain_Attack_and_Deterring_it_Honing_in_
on_the_Golden_SAML_Attack_Technique.pdf

https://owasp.org/www-chapter-singapore/assets/presos/Microservices%20Security%2C%20Container%20Runtime%20Security%2C%20MIT
RE%20ATT%26CK%C2%AE%20%20for%20Kubernetes%20(K8S)%20and%20Service%20Mesh%20for%20Security.pdf

https://github.com/OWASP/www-chapter-singapore/raw/master/assets/presos/Securing_Multi_cloud_Portable_Tier_Microservices_Application
s_A_live_demo_on_cloud_native_application_security_platforms.pdf;

Opinions/views expressed in the talk are solely my own and do not express the views or opinions of my employer.

https://nathanawmk.github.io/
https://sg.linkedin.com/in/awnathan
https://owasp.org/www-chapter-singapore/assets/presos/Securing_your_APIs_-_OWASP_API_Top_10_2019,_Real-life_Case.pdf
https://owasp.org/www-chapter-singapore/assets/presos/Deconstructing_the_Solarwinds_Supply_Chain_Attack_and_Deterring_it_Honing_in_on_the_Golden_SAML_Attack_Technique.pdf
https://owasp.org/www-chapter-singapore/assets/presos/Deconstructing_the_Solarwinds_Supply_Chain_Attack_and_Deterring_it_Honing_in_on_the_Golden_SAML_Attack_Technique.pdf
https://owasp.org/www-chapter-singapore/assets/presos/Microservices%20Security%2C%20Container%20Runtime%20Security%2C%20MITRE%20ATT%26CK%C2%AE%20%20for%20Kubernetes%20(K8S)%20and%20Service%20Mesh%20for%20Security.pdf
https://owasp.org/www-chapter-singapore/assets/presos/Microservices%20Security%2C%20Container%20Runtime%20Security%2C%20MITRE%20ATT%26CK%C2%AE%20%20for%20Kubernetes%20(K8S)%20and%20Service%20Mesh%20for%20Security.pdf
https://github.com/OWASP/www-chapter-singapore/raw/master/assets/presos/Securing_Multi_cloud_Portable_Tier_Microservices_Applications_A_live_demo_on_cloud_native_application_security_platforms.pdf
https://github.com/OWASP/www-chapter-singapore/raw/master/assets/presos/Securing_Multi_cloud_Portable_Tier_Microservices_Applications_A_live_demo_on_cloud_native_application_security_platforms.pdf

Zero
Trust
&
Zero Trust
Architecture

Zero Trust, Micro-segmentation and Service Mesh
(1/3)

Zero trust (ZT) is the term for an evolving set of cybersecurity paradigms that move
defenses from static, network-based perimeters to focus on users, assets, and
resources.

A zero trust architecture (ZTA) uses zero trust principles to plan industrial and
enterprise infrastructure and workflows. Zero trust assumes there is no implicit trust
granted to assets or user accounts based solely on their physical or network location
(i.e., local area networks versus the internet) or based on asset ownership (enterprise
or personally owned).

Authentication and authorization (both subject and device) are discrete functions
performed before a session to an enterprise resource is established.

Zero trust focuses on protecting resources (assets, services, workflows, network
accounts, etc.), not network segments, as the network location is no longer seen as the
prime component to the security posture of the resource.

SOURCE: https://www.cisa.gov/sites/default/files/publications/CISA%20Zero%20Trust%20Maturity%20Model_Draft.pdf; https://docs.microsoft.com/en-us/security/zero-trust/

https://www.cisa.gov/sites/default/files/publications/CISA%20Zero%20Trust%20Maturity%20Model_Draft.pdf
https://docs.microsoft.com/en-us/security/zero-trust/

Foundation of Zero Trust: Zero Trust Maturity Model

The Zero Trust Maturity Model represents a gradient of implementation across five distinct pillars, where minor advancements can be made over time
toward optimization. The pillars, depicted here, include Identity, Device, Network, Application Workload, and Data. Each pillar also includes general
details regarding Visibility and Analytics, Automation and Orchestration, and Governance. This maturity model (Traditional → Advanced → Optimal) is
one of many paths to support the transition to zero trust.

SOURCE: https://www.cisa.gov/sites/default/files/publications/CISA%20Zero%20Trust%20Maturity%20Model_Draft.pdf

https://www.cisa.gov/sites/default/files/publications/CISA%20Zero%20Trust%20Maturity%20Model_Draft.pdf

Zero Trust, Micro-segmentation and Service Mesh (2/3)

SOURCE: https://searchsecurity.techtarget.com/definition/zero-trust-model-zero-trust-network

This is not a comprehensive list of concepts that enable Zero Trust

Secure access to
applications and
infrastructure using
workload/
application identity
rather than IP
addresses

Zero Trust in Cloud-Native, Microservices-based Applications through
Micro-segmentation with SPIFFE and Service Mesh is the focus today

https://searchsecurity.techtarget.com/definition/zero-trust-model-zero-trust-network

Micro-
segmentation

Micro-segmentation is a security technique that creates secure zones in cloud deployments and allows
organizations to isolate workloads from one another and secure them individually.

Micro-segmentation policies can take many forms, including controls based on environment type, regulatory
scope, application, and infrastructure tier.

Workload identity is the key element that enables Zero Trust with Identity-Based Microsegmentation.

Some micro-segmentation/segmentation examples:
1. Istio’s authorization feature, also known as Istio Role Based Access Control, provides

micro-segmentation for services in an Istio mesh
2. AWS provides segmentation capabilities using built-in security groups
3. Prisma Cloud Identity-Based Microsegmentation assigns every protected host and container with

a cryptographically signed workload identity
4. Illumio Core delivers live visibility and micro-segmentation that works on anything (virtual machines,

bare metal, and containers), anywhere (data center, private or public cloud) by activating and
centrally managing the native security controls in the workload.

https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-admin/get-started-with-prisma-cloud/prisma-cloud-how-it-works.html;
https://cdn2.hubspot.net/hubfs/407749/Downloads/Illumio_Article_SecurityWeek_The_Truth_About_Micro-Segmentation_2018_04.pdf;
https://istio.io/latest/blog/2018/istio-authorization/;https://aws.amazon.com/blogs/apn/improving-security-in-the-cloud-with-micro-segmentation/;
https://www.paloaltonetworks.com/prisma/cloud/identity-based-microsegmentation; https://www.paloaltonetworks.com/blog/prisma-cloud/aporeto-integration-prisma-cloud/;
https://www.paloaltonetworks.com/prisma/cloud/cloud-network-security; https://d1.awsstatic.com/Marketplace/solutions-center/downloads/Aporeto-Datasheet-final.pdf

Zero Trust, Micro-segmentation and Service Mesh (3/3)

Workload/Application Identity enables Zero Trust!

https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-admin/get-started-with-prisma-cloud/prisma-cloud-how-it-works.html
https://cdn2.hubspot.net/hubfs/407749/Downloads/Illumio_Article_SecurityWeek_The_Truth_About_Micro-Segmentation_2018_04.pdf
https://istio.io/latest/blog/2018/istio-authorization/
https://aws.amazon.com/blogs/apn/improving-security-in-the-cloud-with-micro-segmentation/
https://www.paloaltonetworks.com/prisma/cloud/identity-based-microsegmentation
https://www.paloaltonetworks.com/blog/prisma-cloud/aporeto-integration-prisma-cloud/
https://www.paloaltonetworks.com/prisma/cloud/cloud-network-security
https://d1.awsstatic.com/Marketplace/solutions-center/downloads/Aporeto-Datasheet-final.pdf

SOURCE:
https://ipwithease.com/microsegmentation-vs-zero-trust/

https://www.paloaltonetworks.com/blog/prisma-cloud/aporeto-integration-prisma-cloud/

https://www.paloaltonetworks.com/cyberpedia/what-is-a-zero-trust-architecture

https://www.illumio.com/sites/default/files/2021-02/micro-segmentation-secure-beyond-breach-20eb10%20%281%29.pdf

Micro-Segmentation vs Zero Trust

Micro-segmentation Zero Trust

● A security technique/approach to
achieve Zero Trust

● An architectural design that serves a
foundation for Zero Trust

● Software - e.g., Prisma Cloud -
Aporeto, illumio

● A principle of “never trust, always
verify,”

● A paradigm or model that assumes
breach

https://ipwithease.com/microsegmentation-vs-zero-trust/
https://www.paloaltonetworks.com/blog/prisma-cloud/aporeto-integration-prisma-cloud/
https://www.paloaltonetworks.com/cyberpedia/what-is-a-zero-trust-architecture
https://www.illumio.com/sites/default/files/2021-02/micro-segmentation-secure-beyond-breach-20eb10%20%281%29.pdf

Zero Trust, Micro-segmentation and the Service Meshes

SOURCE: https://www.portshift.io/blog/microsegmentation-cloud-native-zero-trust/

1. Minimizes the attack surface: Microsegmentation, when
implemented correctly, enables the verification of the identities of all
services before allowing communication between them. It also
checks that this communication is part of recognized workflows.
This makes it an effective response to the proliferation of threats
within the production network and the increased points of privileged
access.

2. Provides policy-driven network security: Microsegmentation
allows DevOps to apply a shift-left security approach for
containerized applications by attaching (or baking in) an identity to
an application or container image as early as possible during the
CI/CD pipeline stage.

3. Decouples security from infrastructure: Enforcing security
policies has no impact on the network and therefore cannot break
the network. The workload is moved to a different infrastructure,
and because its identity and the policy rules don’t change there is
no need to maintain policy on these changes.

4. Visibility: Service mesh increases the visibility of running
workloads and the communication between them. Service meshes
provide connection telemetry and allow topology visualization based
on these telemetries to deliver a clear insight of all connections
inside the mesh.

https://www.portshift.io/blog/microsegmentation-cloud-native-zero-trust/

SOURCE: http://slides.eightypercent.net/spiffe-intro/index.html#1; https://www.vmware.com/asean/company/leadership/joe-beda.html

“Who’s calling? Production Identity in a Microservices
World.” Does Reachability implies authorization?

Does Reachability implies authorization? Certainly not!

Joe Beda is one of the co-creator of
Kubernetes

http://slides.eightypercent.net/spiffe-intro/index.html#1
https://www.vmware.com/asean/company/leadership/joe-beda.html

General Definitions
• Identity – A characteristic or a set of data to uniquely identify a user, process or device. Sometime

expressed with an Identity document (e.g. SVID - SPIFFE Verifiable Identity Document)

• Authn – Authentication – The verification of the identity of a user, process, or device.
• Transport or Peer Authn – Authentication with the immediate peer of the connection even when acting as an

intermediary of a flow. Supported by most service meshes.
• Origin or Request Authn - Authn based on the source and destination of the flow (ie. request) regardless of

intermediaries. Not widely supported by service meshes.

• Authz – Authorization – The determination of the access levels or privileges that should be granted
to an identity.

• Certificate – Contains a public key and an identity. Typically X.509 in this space.

• SVID – SPIFFE Verifiable Identity Document – An identity document defined in the SPIFFE
specification.

• Transport Layer Security (TLS) – A cryptographic protocol designed to provide communications
security over a computer network.

• Zero Trust – Security concepts that assume no peers can be trusted regardless of whether they
appear to be within the same network or security domain.

16

SOURCE: “Security in the World of Service Meshes”
https://www.cncf.io/wp-content/uploads/2020/11/Mesh_security_webinar_final.pptx

Definitions – TLS flavors
• Mutual TLS (mTLS) – A form of TLS where both sides authenticate
the identity of the peer. The “gold standard” for service mesh
implementations of peer Authn. Not yet supported by all service
meshes.

• Server (side) TLS – A form of TLS where the server presents a
certificate to the client which is used to authenticate the server’s
identity. Commonly used in “web surfing” scenarios as the clients are
unknown or outside of server’s security domain.

• Client (side) TLS – A form of TLS where the client presents a
certificate to the upstream server which is used to authenticate the
client’s identity. Least commonly used variant.

17

SOURCE: “Security in the World of Service Meshes”
https://www.cncf.io/wp-content/uploads/2020/11/Mesh_security_webinar_final.pptx

References
• Network Service Mesh – https://networkservicemesh.io/

• Linkerd – https://linkerd.io/

• Istio – https://istio.io/

• SPIFFE – https://spiffe.io/

• SPIRE - https://github.com/spiffe/spire

• X.509 - https://www.itu.int/rec/T-REC-X.509

• Transport Layer Security (TLS) – https://tools.ietf.org/html/rfc8446

18

Note: Much of the content in this talk was directly or indirectly derived from the
above sources. SOURCE: “Security in the World of Service Meshes”

https://www.cncf.io/wp-content/uploads/2020/11/Mesh_security_webinar_final.pptx

https://networkservicemesh.io/
https://linkerd.io/
https://istio.io/
https://spiffe.io/
https://github.com/spiffe/spire
https://www.itu.int/rec/T-REC-X.509
https://tools.ietf.org/html/rfc8446

Establishing Identity in
Service Mesh

Service Identities – The starting point
• In a service mesh world, establishing the identity of the workload
providing a service is critical. Examples:
• Kubernetes: Kubernetes service account
• GKE/GCE: may use GCP service account
• GCP: GCP service account
• AWS: AWS IAM user/role account
• On-premises (non-Kubernetes): user account, custom service account,

service name, Istio service account, or GCP service account. The custom
service account refers to the existing service account just like the identities
that the customer’s Identity Directory manages.

20

https://istio.io/docs/concepts/security/#istio-identity

The new kid on the block for establishing identity is SPIFFE (specification) and
SPIRE (implementation) – more on that below

SOURCE: “Security in the World of Service Meshes”
https://www.cncf.io/wp-content/uploads/2020/11/Mesh_security_webinar_final.pptx

https://istio.io/docs/concepts/security/#istio-identity

Conversion of that identity into a certificate
• A private key within the workload pod is generated and made
available to the proxy.

• A certificate signing request is sent to the control plane.
• The control plane signs either with a self-signed root certificate or an
external source (e.g. vault).

• The control plane provides the proxy a certificate scoped to the
identity of the POD (e.g. K8s service-account).

• Control plane will manage rotation.
• Some meshes may use certificates mounted to the proxies via other
means.

21
SOURCE: https://www.cncf.io/wp-content/uploads/2020/11/Mesh_security_webinar_final.pptx

AuthN - Authentication

Authentication Layers

23

Workload
A_1

Workload
A

E
nvoy

S
D

S

Workload
C_1

Workload
A

S
D

S

Workload
A2

Transport Authn (mTLS)
Transport Authn (mTLS)

Origin Authn (JWT)

cl
ie

nt

Peer or Transport Authn—tied explicitly to the network layer parameters/proto
e.g. mTLS handshake certificate content

Request or Origin Authn—ability to correlate the origin of the flow (ie. request)
regardless of intermediaries

Proxy

Proxy

Proxy

All meshes offer some form of Peer/Transport Authentication. Some meshes
additionally support Request/Origin Auth in the proxy. Request/Origin auth can still be
done by the workload without participation by the mesh or proxy.

SOURCE: https://www.cncf.io/wp-content/uploads/2020/11/Mesh_security_webinar_final.pptx

Authn sequence for mTLS

24
https://www.codeproject.com/Articles/326574/An-Introduction-to-Mutual-SSL-Authentication

Single-sided TLS vs. mTLS
• Although mutual TLS is the gold standard other options must be supported for several

reasons:
• It is necessary to accept traffic into the mesh from clients that can’t be authenticated (e.g. clients

not within the same administrative or security domain).
• Similarly, it is necessary to send to clients or servers that can’t be authenticated.
• Multiple meshes without a common identity framework may need to share traffic.

• For these cases one sided TLS authentication is useful.
• Server side is available as an option in most service meshes. The server side presents its identity

via a certificate that is tracible back to a well know issuer.
• Client side is also possible but not widely supported. The client side presents its identity, and the

server is configured with a means to authenticate the client. Often this requires some amount of
direct certificate population.

• Clear text is a final fall back – but diminishes one of the key benefits of using a service
mesh in the first place.

25

SOURCE: “Security in the World of Service Meshes”
https://www.cncf.io/wp-content/uploads/2020/11/Mesh_security_webinar_final.pptx

Authorization
• Once a peer has been authenticated, the next step is to decide if it is authorized.
• Authorization determines whether a sender and receiver have the necessary permissions

or privileges to talk to one another.
• The authorization is often expressed in a policy and sometimes referred to as access

control.
• To be effective there must be some means of coupling the authorization with the identities

determined with Authn.
• Although common in service meshes, it is not universally supported in all service meshes.
• The authorization may be implemented in either the client-side proxy or server-side proxy

or both.
• NOTE – Authorization here only covers Service Mesh authorization. The application may

have its own authorization functionality independent of the service mesh.

26

SOURCE: “Security in the World of Service Meshes”
https://www.cncf.io/wp-content/uploads/2020/11/Mesh_security_webinar_final.pptx

Components

Authn Architecture (with Linkerd)

28

Identity

Linkerd Controller

Linkerd-proxy

Application

K8s

Linkerd-proxy

Application

Service Account (SA)

mTLS Handshake

Certificates &
Signing requests

Proxy-inje
ctor

Trust Anchors

• Service Account provides the
workload an Identity.

• The Linkerd Controller will sign the
certificate and provide it to the proxy
so the identity is verifiable with PKI
techniques.

• The verifiable certificate is presented
by both sides during the handshake.

SOURCE: “Security in the World of Service Meshes”
https://www.cncf.io/wp-content/uploads/2020/11/Mesh_security_webinar_final.pptx

Authorization Architecture

29

Authz Policy
Module

Service Mesh
Controller

Sidecar-proxy

Application

K8s API
server

sidecar-proxy

Application

Authz Policy CRDs

mTLS

Authz
Proxy
config

Authz Policy objects

Src Identity: outside
of mesh

Dest Identity: within
Mesh

Src & Dest
Identity:

within Mesh

Dest Identity: outside
of mesh

Src Identity: within
Mesh

SOURCE: “Security in the World of Service Meshes”
https://www.cncf.io/wp-content/uploads/2020/11/Mesh_security_webinar_final.pptx

Authorization Example (From SMI)

30

kind: TrafficTarget
metadata:
 name: path-specific
 namespace: default
spec:
 destination:
 kind: ServiceAccount
 name: service-a
 namespace: default
 port: 8080
 rules:
 - kind: HTTPRouteGroup
 name: the-routes
 matches:
 - metrics
 sources:
 - kind: ServiceAccount
 name: prometheus
 namespace: default

Source identity specified with service account

Destination identity specified with service account

Match criteria

SOURCE: “Security in the World of Service Meshes”
https://www.cncf.io/wp-content/uploads/2020/11/Mesh_security_webinar_final.pptx

Service Mesh Multi-cluster
Identity and Trust Models

Shared Root Trust

• The most common identity model used for Inter-cluster traffic in
service mesh offerings when mTLS is supported between clusters.

• Nearly all service mesh implementations provide examples of how-to
config this model.

• Relies on all certificates being traceable back to a common root so all
parties can authenticate one another.

32

SOURCE: “Security in the World of Service Meshes”
https://www.cncf.io/wp-content/uploads/2020/11/Mesh_security_webinar_final.pptx

Bridged trust via an intermediary
Via ServiceMeshHub and Istio

Cluster 1
Trust Domain

Cluster 2
Trust Domain

Trust
Domain
to bridge

SOURCE: “Security in the World of Service Meshes”
https://www.cncf.io/wp-content/uploads/2020/11/Mesh_security_webinar_final.pptx

Federated Identity – with SPIFFE and SPIRE

SOURCE: “Security in the World of
Service Meshes”
https://www.cncf.io/wp-content/upload
s/2020/11/Mesh_security_webinar_fin
al.pptx

NSM’s use of SPIFFE/SPIRE

• The Network Service Mesh project use SPIRE servers to provide
identity within its implementation.

• It is used to secure API communication between all clients and
servers of the API.

• For those familiar with NSM these include NSCs, NSEs, NSRs, NSMs,
etc.

• In the floating Interdomain use case the API communication crosses
multiple cluster boundaries and potentially multiple security domains.

• As such, it is a great use case to display SPIFFE’s and SPIRE’s
capabilities in a multi-cluster environment.

35

SOURCE: “Security in the World of Service Meshes”
https://www.cncf.io/wp-content/uploads/2020/11/Mesh_security_webinar_final.pptx

NSMgr
1

foo NSE

Proxy-n
smgr1

bar NSENSR

NSM

NSR

NSM

NS Request

1 2

3
4

Proxy-n
smgr2

NSR

NSM

NSMgr
2

NSR

NSM 7
5

6
NSM Forwarder NSM Forwarder

vWire

Cluster1 Cluster2

NSM Interdomain Flow

Floating
Interdomain

NSR

The flow below exemplifies an NSM floating
Interdomain API flow.
They all require mTLS and certifiable identity.
A good example use case for SPIFFE/SPIRE.
NSM uses SPIRE for identity and attestation

Cluster3

SOURCE: “Security in the World of Service Meshes”
https://www.cncf.io/wp-content/uploads/2020/11/Mesh_security_webinar_final.pptx

NSMgr
1

foo NSE

Proxy-n
smgr1

bar NSENSR

NSM

NSR

NSM

NS Request

1 2

3
4

Proxy-n
smgr2

NSR

NSM

NSMgr
2

NSR

NSM 7
5

Cluster1 Cluster2

NSM SPIRE Agent and Server topology

Floating
Interdomain

NSR

Cluster3

SPIRE
server

SPIRE
server

SPIRE
agent

SPIRE
agent

SPIRE
server

SPIRE
AgentX.509 Root

SVID propagation via
Workload API

Cert generation from
common root

mTLS
exchanges
using SVID
as identity

SOURCE: “Security in the World of Service Meshes”
https://www.cncf.io/wp-content/uploads/2020/11/Mesh_security_webinar_final.pptx

SPIFFE/SPIRE:
A new way to establish Identity

What is SPIFFE
SPIFFE is a new set of APIs and associated tooling that provides a uniform language for describing service identity in a wide range
of workloads (including orchestrated systems), verifying that identity, and providing a workload with documents that serve as proof
of that identity. It is inspired in large part by Google’s Low Overhead Authentication Service.

Historically, “service identity” is defined very differently depending on the organisation and the specific system they are running. A
“service” for example may be an Apache web-server running on a set of Amazon EC2 VMs in an auto-scaling group, but might also
be an application in Pivotal Cloud Foundry running in Google Compute Engine, or an Oracle database running on a HP Enterprise
Proliant server.

SPIFFE provides a general purpose framework for defining and verifying service identity in a wide range of environments such as
these, and ensuring services can easily and safely retrieve the identities that represent them. The verification SPIFFE performs is
conducted both for the infrastructure the workload is running on (node level) and how that workload was provisioned onto the
infrastructure (process level).

This is achieved with a set of coupled API driven components that vastly simplify and automate the process, ensuring an operator
can employ industry best practices for establishing identity for a wide range of systems without needing to reason about the
complexities of PKI infrastructure or node/process attestation.

SOURCE: Design Document: SPIFFE Reference Implementation (SRI)

SPIFFE & SPIRE
• SPIFFE is the specification.
• SPIRE is an implementation of the specification.
• SPIFFE is a set of open-source specifications for a framework capable of bootstrapping

and issuing identity to services across heterogeneous environments and organizational
boundaries. (https://spiffe.io/docs/latest/spiffe/overview/)

• Provides an identity framework suitable for today’s cloud native applications.
• Service meshes are moving toward supporting SPIFFE. The extent of support varies

based on service mesh.
• As an example, Network Service Mesh has adopted SPIFFE and uses SPIRE to provide

the implementation.
• Kuma, Consul Connect and Istio all support parts of the SPIFFE specification.

40

SOURCE: “Security in the World of Service Meshes”
https://www.cncf.io/wp-content/uploads/2020/11/Mesh_security_webinar_final.pptx

https://spiffe.io/docs/latest/spiffe/overview/

SVID as defined by SPIFFE

41

spiffe://<domain>/ns/<namespace>/sa/<serviceaccount>

x.509 Certificate UR
I

SOURCE: “Security in the World of Service Meshes”
https://www.cncf.io/wp-content/uploads/2020/11/Mesh_security_webinar_final.pptx

Spire Server and Agent

42

1. A SPIRE deployment is composed of a SPIRE
Server and one or more SPIRE Agents.

2. A Server acts as a signing authority for identities
issued to a set of workloads via Agents.

3. The Server also maintains a registry of workload
identities and the conditions that must be verified in
order for those identities to be issued.

4. Agents expose the SPIFFE Workload API locally
to workloads, and must be installed on each node
on which a workload is running.

SPIRE
Server

SPIRE
Agents

SPIRE
Agents

SPIRE Server Design Details

43

A SPIRE Server is responsible for managing and issuing all identities in
its configured SPIFFE trust domain. It stores registration entries (which
specify the selectors that determine the conditions under which a particular
SPIFFE ID should be issued) and signing keys, uses node attestation to
authenticate agents’ identities automatically, and creates SVIDs for
workloads when requested by an authenticated agent.

The behavior of the server is determined through a series of plugins. SPIRE
comes with several plugins included, but additional plugins can be built to
extend SPIRE for specific use cases. Types of plugins include:

Node attestor plugins which, together with agent node attestors, verify the
identity of the node the agent is running on. See the section Node Attestation
for more information.

Node resolver plugins which expand the set of selectors the server can use
to identify the node by verifying additional properties about the node. See the
section Node Resolution for more information.

Datastore plugins, which the server uses to store, query, and update various
pieces of information, such as registration entries, which nodes have
attested, what the selectors for those nodes are. There is one built-in
datastore plugin which can use a MySQL, SQLite 3, or PostgresSQL
database to store the necessary data. By default it uses SQLite 3.

Key manager plugins, which control how the server stores private keys used
to sign X.509-SVIDs and JWT-SVIDs.

Upstream authority plugins. By default the SPIRE Server acts as its own
certificate authority. However, you can use an upstream authority plugin to
use a different CA from a different PKI system.

You customize the server’s behavior by configuring plugins and various other
configuration variables. See the SPIRE Server Configuration Reference for
details.

SPIRE Node Agent Design Details

44

A SPIRE Agent runs on every node on
which an identified workload runs. The
agent:

1. Requests SVIDs from the server
and caches them until a workload
requests its SVID

2. Exposes the SPIFFE Workload
API to workloads on node and
attests the identity of workloads
that call it

3. Provides the identified workloads
with their SVIDs

Workload Attestation (1/2)

45

Workload attestation asks the question: “Who is this process?”
The agent answers that question by interrogating locally
available authorities (such as the node’s OS kernel, or a local
kubelet running on the same node) in order to determine the
properties of the process calling the Workload API.

These properties are then compared against the information
provided to the server when you registered the workload’s
properties using selectors.

These types of information might include:

● How the process is scheduled by the underlying
operating system. On a Unix-based systems, this might
be by User ID (uid), Group ID (gid), filesystem path,
etcetera.)

● How the process is scheduled by an orchestration
system such as Kubernetes. In this case, the workload
might be described by the Kubernetes Service Account
or namespace it is running in.

While both agents and servers play a role in node attestation,
only agents are involved in workload attestation.

The diagram illustrates the steps in workload attestation.

Workload Attestation (2/2)

46

Summary of Steps: Workload Attestation
1. A workload (WL) calls the Workload API to request

an SVID. On Unix systems this is exposed as a
Unix Domain Socket.

2. The agent interrogates the node’s kernel to identify
the process ID of the caller. It then invokes any
configured workload attestor plugins, providing
them with the process ID of the workload.

3. Workload attestors use the process ID to discover
additional information about the workload,
querying neighboring platform-specific
components – such as a Kubernetes kubelet as
necessary. Typically these components also reside
on the same node as the agent.

4. The attestors return the discovered information to
agent in the form of selectors.

5. The agent determines the workload’s identity by
comparing discovered selectors to registration
entries, and returns the correct cached SVID to the
workload.

Spiffe Walkthrough and Demo
1. Basics and Setup
2. Integrating with Envoy using X.509 certs
3. Integrating with Envoy using JWT
4. Using SPIFFE X.509 IDs with Envoy and Open Policy Agent Authorization
5. Using SPIFFE JWT IDs with Envoy and Open Policy Agent Authorization

SOURCE: https://github.com/spiffe/spire-tutorials; https://github.com/spiffe/spire-tutorials/blob/master/k8s/envoy-x509;
https://github.com/spiffe/spire-tutorials/blob/master/k8s/envoy-jwt; https://github.com/spiffe/spire-tutorials/blob/master/k8s/envoy-opa

https://github.com/spiffe/spire-tutorials
https://github.com/spiffe/spire-tutorials/blob/master/k8s/envoy-x509
https://github.com/spiffe/spire-tutorials/blob/master/k8s/envoy-jwt
https://github.com/spiffe/spire-tutorials/blob/master/k8s/envoy-opa

Two Frontends

http://localhost:3002/http://localhost:3000/

http://localhost:3002/
http://localhost:3002/

Spiffe Walkthrough and Demo - Basics and Setup
1. cd C:\Users\AWNATHAN\Desktop\Others\spire-tutorials-master\k8s\quickstart\
2. kubectl apply -f spire-namespace.yaml
3. kubectl get namespaces
4. kubectl apply -f server-account.yaml -f spire-bundle-configmap.yaml -f

server-cluster-role.yaml
5. kubectl apply -f server-configmap.yaml -f server-statefulset.yaml -f server-service.yaml
6. kubectl get statefulset --namespace spire
7. kubectl apply -f agent-account.yaml -f agent-cluster-role.yaml
8. kubectl apply -f agent-configmap.yaml -f agent-daemonset.yaml
9. kubectl get daemonset --namespace spire

10. kubectl exec -n spire spire-server-0 -- /opt/spire/bin/spire-server entry create -spiffeID
spiffe://example.org/ns/spire/sa/spire-agent -selector k8s_sat:cluster:demo-cluster -selector
k8s_sat:agent_ns:spire -selector k8s_sat:agent_sa:spire-agent -node

11. kubectl exec -n spire spire-server-0 -- /opt/spire/bin/spire-server entry create -spiffeID
spiffe://example.org/ns/default/sa/default -parentID
spiffe://example.org/ns/spire/sa/spire-agent -selector k8s:ns:default -selector k8s:sa:default

12. kubectl apply -f client-deployment.yaml
13. kubectl exec -it $(kubectl get pods -o=jsonpath='{.items[0].metadata.name}' -l app=client) --

/bin/sh
14. /opt/spire/bin/spire-agent api fetch -socketPath /run/spire/sockets/agent.sock
15. exit

SOURCE:https://spiffe.io/docs/latest/try/getting-started-k8s/

1. Create the appropriate
Kubernetes namespaces and
service accounts to deploy
SPIRE

2. Deploy the SPIRE Server as
a Kubernetes statefulset

3. Deploy the SPIRE Agent as a
Kubernetes daemonset

4. Configure a registration entry
for a workload

5. Fetch an x509-SVID over the
SPIFFE Workload API

https://spiffe.io/docs/latest/try/getting-started-k8s/

Spiffe Walkthrough and Demo - Integrating with Envoy
using X.509 certs: Configure Envoy to Perform X.509
SVID Authentication (1/2)

https://github.com/spiffe/spire-tutorials/tree/master/k8s/envoy-x509

https://github.com/spiffe/spire-tutorials/tree/master/k8s/envoy-x509

Spiffe Walkthrough and Demo - Integrating with Envoy
using X.509 certs: Configure Envoy to Perform X.509
SVID Authentication (2/2)

https://github.com/spiffe/spire-tutorials/tree/master/k8s/envoy-x509

cd C:\Users\AWNATHAN\Desktop\Others\spire-tutorials-master\k8s\\envoy-x509

kubectl apply -k k8s/.

kubectl exec -n spire spire-server-0 -c spire-server -- /opt/spire/bin/spire-server entry create -parentID spiffe://example.org/ns/spire/sa/spire-agent -spiffeID spiffe://example.org/ns/default/sa/default/backend
-selector k8s:ns:default -selector k8s:sa:default -selector k8s:pod-label:app:backend -selector k8s:container-name:envoy

kubectl exec -n spire spire-server-0 -c spire-server -- /opt/spire/bin/spire-server entry create -parentID spiffe://example.org/ns/spire/sa/spire-agent -spiffeID spiffe://example.org/ns/default/sa/default/frontend
-selector k8s:ns:default -selector k8s:sa:default -selector k8s:pod-label:app:frontend -selector k8s:container-name:envoy

kubectl exec -n spire spire-server-0 -c spire-server -- /opt/spire/bin/spire-server entry create -parentID spiffe://example.org/ns/spire/sa/spire-agent -spiffeID spiffe://example.org/ns/default/sa/default/frontend-2
-selector k8s:ns:default -selector k8s:sa:default -selector k8s:pod-label:app:frontend-2 -selector k8s:container-name:envoy

kubectl get services

http://localhost:3000/
http://localhost:3002/

kubectl apply -f backend-envoy-configmap-update.yaml

kubectl scale deployment backend --replicas=0
kubectl scale deployment backend --replicas=1

http://localhost:3000/
http://localhost:3002/

https://github.com/spiffe/spire-tutorials/tree/master/k8s/envoy-x509

Spiffe Walkthrough and Demo - Integrating with Envoy
using JWT (1/2)

Spiffe Walkthrough and Demo - Integrating with Envoy
using JWT (2/2)

cd C:\Users\AWNATHAN\Desktop\Others\spire-tutorials-master\k8s\\envoy-jwt

kubectl delete deployment backend

kubectl delete deployment frontend

kubectl apply -k k8s/.

kubectl exec -n spire spire-server-0 -c spire-server -- /opt/spire/bin/spire-server entry create -parentID spiffe://example.org/ns/spire/sa/spire-agent -spiffeID
spiffe://example.org/ns/default/sa/default/backend -selector k8s:ns:default -selector k8s:sa:default -selector k8s:pod-label:app:backend -selector k8s:container-name:auth-helper

kubectl exec -n spire spire-server-0 -c spire-server -- /opt/spire/bin/spire-server entry create -parentID spiffe://example.org/ns/spire/sa/spire-agent -spiffeID
spiffe://example.org/ns/default/sa/default/frontend -selector k8s:ns:default -selector k8s:sa:default -selector k8s:pod-label:app:frontend -selector k8s:container-name:auth-helper

kubectl logs -f --selector=app=frontend -c auth-helper

kubectl logs -f --selector=app=backend -c auth-helper

http://localhost:3000/
http://localhost:3002/

kubectl delete deployment frontend-2

kubectl apply -k k8s/frontend-2/.

cd .\k8s\frontend-2\

kubectl exec -n spire spire-server-0 -c spire-server -- /opt/spire/bin/spire-server entry create -parentID spiffe://example.org/ns/spire/sa/spire-agent -spiffeID
spiffe://example.org/ns/default/sa/default/frontend-2 -selector k8s:ns:default -selector k8s:sa:default -selector k8s:pod-label:app:frontend-2 -selector k8s:container-name:auth-helper

kubectl logs -f --selector=app=frontend-2 -c auth-helper

http://localhost:3002/

SOURCE:
https://github.com/spiffe/spire-tutorials/tree/master
/k8s/envoy-jwt

https://github.com/spiffe/spire-tutorials/tree/master/k8s/envoy-jwt
https://github.com/spiffe/spire-tutorials/tree/master/k8s/envoy-jwt

Open Policy Agent (1/2)
Policy-based control for cloud native environments: Flexible,
fine-grained control for administrators across the stack.

Stop using a different policy language, policy model, and policy API for
every product and service you use. Use OPA for a unified toolset and
framework for policy across the cloud native stack. Whether for one
service or for all your services, use OPA to decouple policy from the
service's code so you can release, analyze, and review policies (which
security and compliance teams love) without sacrificing availability or
performance.

Declarative Policy: Context-aware, Expressive, Fast, Portable

Architectural Flexibility: Balance integration, availability, consistency

1. Deploy OPA as a separate process on the same host as your
service. Integrate OPA by changing your service’s code,
importing an OPA-enabled library, or using a network proxy
integrated with OPA.

2. Embed OPA policies into your service. Integrate OPA as a Go
library that evaluates policy, or integrate a WebAssembly
runtime and use OPA to compile policy to WebAssembly
instructions.

SOURCE:
https://www.openpolicyagent.org/

https://www.openpolicyagent.org/

Open Policy Agent (2/2) - Rego Playground

SOURCE: https://play.openpolicyagent.org/p/DqXNKeLm20

https://play.openpolicyagent.org/p/DqXNKeLm20

Spiffe Walkthrough and Demo - Using SPIFFE X.509
IDs with Envoy and Open Policy Agent Authorization

cd
C:\Users\AWNATHAN\Desktop\Others\spire-tutorials-m
aster\k8s\\envoy-opa

kubectl apply -k k8s/.

kubectl get services

kubectl edit configmap backend-opa-policy-config

spiffe://example.org/ns/default/sa/default/frontend-2

kubectl scale deployment backend --replicas=0
kubectl scale deployment backend --replicas=1

SOURCE:
https://github.com/spiffe/spire-tutori
als/tree/master/k8s/envoy-opa

https://github.com/spiffe/spire-tutorials/tree/master/k8s/envoy-opa
https://github.com/spiffe/spire-tutorials/tree/master/k8s/envoy-opa

Spiffe Walkthrough and Demo -
Using SPIFFE JWT IDs with Envoy and Open Policy
Agent Authorization

cd C:\Users\AWNATHAN\Desktop\Others\spire-tutorials-master\k8s\\envoy-jwt-opa

kubectl apply -k k8s/.

kubectl scale deployment backend --replicas=0

kubectl scale deployment backend --replicas=1

kubectl edit configmap backend-opa-policy-config

svc_spiffe_id == "spiffe://example.org/ns/default/sa/default/frontend-2"

kubectl scale deployment backend --replicas=0
kubectl scale deployment backend --replicas=1

http://localhost:3000/
http://localhost:3002/

SOURCE:
https://github.com/spiffe/spire-tutori
als/tree/master/k8s/envoy-jwt-opa

https://github.com/spiffe/spire-tutorials/tree/master/k8s/envoy-jwt-opa
https://github.com/spiffe/spire-tutorials/tree/master/k8s/envoy-jwt-opa

Zero Trust Architecture
(ZTA) in across
different environments
(cloud-native, on-prem)

Recap

Identity-Based
Micro-segmentation
with Securing
Production Identity
Framework for
Everyone (SPIFFE),
Service Mesh and
Open Policy Agent

An enabler

Another Useful Project for Service Mesh - Meshery:
The Service Mesh Management Plane

SOURCE: https://meshery.io/

Meshery is the open
source, service mesh
management plane
that enables the
adoption, operation,
and management of
any service mesh and
their workloads.

https://meshery.io/

Solving the Bottom Turtle - a very fascinating read! (Please
check it out!)

SOURCE: https://spiffe.io/book/

This book presents the SPIFFE standard for service identity, and
SPIRE, the reference implementation for SPIFFE. These projects
provide a uniform identity control plane across modern, heterogeneous
infrastructure. Both projects are open source and are part of the Cloud
Native Computing Foundation. As organizations grow their application
architectures to make the most of new infrastructure technologies, their
security models must also evolve.

Software has grown from one monolith on one box, to dozens or
hundreds of tightly linked microservices that may be spread across
thousands of virtual machines in public clouds or private data centers.

In this new infrastructure world, SPIFFE and SPIRE help keep systems
secure. This book strives to distill the experience from the foremost
security experts and SPIFFE community members to provide a deep
understanding of the identity problem and how to solve it. With these
projects, developers and operators can build software using new
infrastructure technologies while allowing security teams to step back
from expensive and time-consuming manual security processes.

Building an End-to-End Secure Software Factory (SSF) to
Defend the Digital Cloud-Native Software Supply Chain

against attacks: Helpful Cloud-Native Security Checklists
and Notary (The Update Framework) (Demo)

SOURCE: https://blog.sonatype.com/hs-fs/hubfs/DevSecOps%20secure%20practices.png?width=600&name=DevSecOps%20secure%20practices.png
https://www.imperva.com/learn/wp-content/uploads/sites/13/2020/08/Application-Security-Testing.png

Acronyms overload!
Runtime Application Self Protection (RASP),
etc...

Bring your developers along this journey! Involve them at every step so they won’t feel
forced/compelled/threatened. Secure buy-in through tender loving care (TLC).

https://blog.sonatype.com/hs-fs/hubfs/DevSecOps%20secure%20practices.png?width=600&name=DevSecOps%20secure%20practices.png
https://www.imperva.com/learn/wp-content/uploads/sites/13/2020/08/Application-Security-Testing.png

SOURCE: http://redhatgov.io/workshops/secure_software_factory/lab02/
https://cloud.gov/docs/compliance/ato-process/

Trusted Software Supply Chain

Each phase in our
Trusted Software Supply
Chain will have a policy
defining the stage gate for
success and will generate
a documentation artifact
that will later be used as
part of the ATO process -
Authority to Operate
(ATO)

http://redhatgov.io/workshops/secure_software_factory/lab02/
https://cloud.gov/docs/compliance/ato-process/

SOURCE:
https://holisticsecurity.io/assets/blog20200210/20200210-security-along-container-based-sdlc-
v2.png

Trusted Software Supply Chain / Secure Software Development Life
Cycle (SSDLC)

https://holisticsecurity.io/assets/blog20200210/20200210-security-along-container-based-sdlc-v2.png
https://holisticsecurity.io/assets/blog20200210/20200210-security-along-container-based-sdlc-v2.png

SOURCE: https://blog.shiftleft.io/understand-offense-to-inform-defense-ccb06f69ac19

https://blog.shiftleft.io/understand-offense-to-inform-defense-ccb06f69ac19

Recap: An Overview of Cloud Native Security: The 4C's of Cloud Native security

SOURCE: https://kubernetes.io/docs/concepts/security/overview/

Note: This layered approach augments the defense in depth computing approach to security, which is
widely regarded as a best practice for securing software systems.

https://kubernetes.io/docs/concepts/security/overview/

Helpful Cloud-native Security Checklists/Tools/Guidelines

SOURCE:
https://www.paloaltonetworks.com/apps/pan/publi
c/downloadResource?pagePath=/content/pan/en
_US/resources/datasheets/prisma-cloud-native-s
ecurity-checklist-ds

This Cloud-Native Security checklist is my
personal favourite.

Prisma® Cloud secures infrastructure, applications, data and
entitlements across the world’s largest clouds, all from a single
unified solution. With a combination of cloud service provider
APIs and a unified agent framework, users gain unmatched
visibility and protection.

Prisma Cloud integrates with any continuous integration and
continuous delivery (CI/CD) workflow to secure cloud
infrastructure and applications early in development. Scan
infrastructure-as-code (IaC) templates, container images,
serverless functions and more while gaining powerful, full-stack
runtime protection. This is unified security for DevOps and
security teams.

https://www.paloaltonetworks.com/apps/pan/public/downloadResource?pagePath=/content/pan/en_US/resources/datasheets/prisma-cloud-native-security-checklist-ds
https://www.paloaltonetworks.com/apps/pan/public/downloadResource?pagePath=/content/pan/en_US/resources/datasheets/prisma-cloud-native-security-checklist-ds
https://www.paloaltonetworks.com/apps/pan/public/downloadResource?pagePath=/content/pan/en_US/resources/datasheets/prisma-cloud-native-security-checklist-ds
https://www.paloaltonetworks.com/apps/pan/public/downloadResource?pagePath=/content/pan/en_US/resources/datasheets/prisma-cloud-native-security-checklist-ds

OWASP DevSecOps Guideline + OWASP Software
Assurance Maturity Model (SAMM)

https://github.com/OWASP/DevSecOpsGuideline;
https://owaspsamm.org/model/;
https://owasp.org/www-project-devsecops-guideline/

1. Take care of secrets and credentials in git
repositories

2. SAST (Static Application Security Test)
3. IAST (Interactive Application Security

Testing)
4. DAST (Dynamic Application Security Test)
5. Infrastructure scanning
6. Compliance check

https://github.com/OWASP/DevSecOpsGuideline
https://owaspsamm.org/model/
https://owasp.org/www-project-devsecops-guideline/

OWASP Software Assurance Maturity Model (SAMM)

https://owaspsamm.org/model/

OWASP Software Assurance
Maturity Model (SAMM) is to be the
prime maturity model for software
assurance that provides an
effective and measurable way for
all types of organizations to analyze
and improve their software security
posture.

OWASP SAMM supports the
complete software lifecycle,
including development and
acquisition, and is technology and
process agnostic. It is intentionally
built to be evolutive and risk-driven
in nature.

https://owaspsamm.org/model/

Helpful Cloud-native Security Checklists/Tools/Guidelines

1. Securing the Code: For developers such as myself, and all other developers, start with something more
developer-centric/friendly/palatable and/or starters such as the https://12factor.net/ to slowly introduce
security topics (Perhaps start from the second factor of the Twelve-Factor app: “Explicitly declare and
isolate dependencies” to introduce Software Composition Analysis (SCA) tool such as OWASP Dependency
Check)

2. For Developers/Security Architects:

a. Principles of secure development & deployment -
https://github.com/ukncsc/secure-development-and-deployment

b. https://github.com/brant-ruan/awesome-cloud-native-security

3. Hardening/securing the K8S Cluster

a. https://media.defense.gov/2021/Aug/03/2002820425/-1/-1/1/CTR_KUBERNETESHARDENINGGUID
ANCE.PDF

b. https://github.com/Vinum-Security/kubernetes-security-checklist

4. Securing the Cloud Open Source Tools for Cloud Security
a. https://github.com/toniblyx/my-arsenal-of-aws-security-tools

https://12factor.net/
https://github.com/ukncsc/secure-development-and-deployment
https://github.com/brant-ruan/awesome-cloud-native-security
https://media.defense.gov/2021/Aug/03/2002820425/-1/-1/1/CTR_KUBERNETESHARDENINGGUIDANCE.PDF
https://media.defense.gov/2021/Aug/03/2002820425/-1/-1/1/CTR_KUBERNETESHARDENINGGUIDANCE.PDF
https://github.com/Vinum-Security/kubernetes-security-checklist
https://github.com/toniblyx/my-arsenal-of-aws-security-tools

Helpful Cloud-native Security Checklists/Tools/Guidelines

● https://github.com/gunjan5/cloud-native-security

● https://resources.github.com/downloads/DevSecOps-on-AWS-ATO-Brief-for-ReInvent-shar
e.pdf

● https://github.com/mitre/mitre-saf/tree/master/public

● https://dodcio.defense.gov/Portals/0/Documents/Library/DoDEnterpriseDevSecOpsStrategy
Guide.pdf

These lists are not meant to be comprehensive but this is the distilled list.

https://github.com/gunjan5/cloud-native-security
https://resources.github.com/downloads/DevSecOps-on-AWS-ATO-Brief-for-ReInvent-share.pdf
https://resources.github.com/downloads/DevSecOps-on-AWS-ATO-Brief-for-ReInvent-share.pdf
https://github.com/mitre/mitre-saf/tree/master/public
https://dodcio.defense.gov/Portals/0/Documents/Library/DoDEnterpriseDevSecOpsStrategyGuide.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DoDEnterpriseDevSecOpsStrategyGuide.pdf

The Update Framework: A framework for
securing software update systems

The Update Framework (TUF) helps developers maintain the security of software update systems, providing
protection even against attackers that compromise the repository or signing keys. TUF provides a flexible
framework and specification that developers can adopt into any software update system. TUF is hosted by the
Linux Foundation as part of the Cloud Native Computing Foundation (CNCF) and is used in production by
various tech companies and open source organizations.

A variant of TUF called Uptane is widely used to secure over-the-air updates in automobiles.

Uptane is an open and secure software update system design which protects software delivered over-the-air
to the computerized units of automobiles. The framework can thwart attacks from malicious actors who can
compromise servers and networks used to sign and deliver updates. Hence, it is designed to be resilient even
to the best efforts of nation state attackers. There are multiple different free open source and closed source
implementations available. Uptane is integrated into Automotive Grade Linux, an open source system currently
used by many large OEMs, and has also been adopted by a number of U.S. and international manufacturers.
Within the next few years, about one-third of new cars on U.S. roads will include Uptane.

Currently considered the de facto secure standard for software updates on automobiles.

https://theupdateframework.com/
https://uptane.github.io/

https://theupdateframework.com/
https://uptane.github.io/

Uptane: Securing Software Updates for Automobiles

https://uptane.github.io/

https://uptane.github.io/

Python reference implementation of The Update
Framework (TUF)

https://github.com/theupdateframework/python-tuf/blob/develop/docs/QUICKSTART.md
https://github.com/theupdateframework/python-tuf/blob/develop/docs/CLI.md

1. Install TUF
a. python -m pip install securesystemslib[colors,crypto,pynacl] tuf

2. Create a basic repository and client
a. repo.py --init

3. Add an update to the repository.
a. echo 'Test file' > testfile
b. repo.py --add testfile

4. Serve the repo
a. python3 -m http.server 8001

5. Obtain and verify the testfile update on a client.
a. client.py --repo http://localhost:8001 testfile

The client can request the
package testfile from the
repository. TUF will download
and verify metadata from the
repository as necessary to
determine what the trustworthy
hashes and length of testfile are,
then download the target testfile
from the repository and keep it
only if it matches that
trustworthy metadata.

https://github.com/theupdateframework/python-tuf/blob/develop/docs/QUICKSTART.md
https://github.com/theupdateframework/python-tuf/blob/develop/docs/CLI.md

Docker Content Trust: What It Is and How It Secures Container Images
Can your container image be trusted? Learn how Docker Content Trust
(DCT) employs digital signatures for container image verification and
manages trusted collections of content.

https://www.trendmicro.com/vinfo/sg/security/news/virtualization-and-cloud/docker-content-trust-what-it-is-and-how-it-secur
es-container-images

The Docker Notary tool allows
publishers to digitally sign their
collections while users get to
verify the integrity of the content
they pull. Through The Update
Framework (TUF), Notary users
can provide trust over arbitrary
collections of data and manage
the operations necessary to
ensure freshness of content.

https://www.trendmicro.com/vinfo/sg/security/news/virtualization-and-cloud/docker-content-trust-what-it-is-and-how-it-secures-container-images
https://www.trendmicro.com/vinfo/sg/security/news/virtualization-and-cloud/docker-content-trust-what-it-is-and-how-it-secures-container-images

At the end of the day, the developer is still the
key - no amount of framework, technologies,
platforms can replace vigilance and awareness.

 “Zero trust is not a technology, it’s not something you buy, it’s a strategy.”
- Gregory Touhill

“Zero trust is a concept, not an action.” - KEN WESTIN, SECURITY
RESEARCHER

References
● https://www.cncf.io/online-programs/cncf-member-webinar-security-in-the-world-of-service-meshes/
● https://github.com/OWASP/www-chapter-singapore/raw/master/assets/presos/Securing_Multi_cloud

_Portable_Tier_Microservices_Applications_A_live_demo_on_cloud_native_application_security_pl
atforms.pdf

● https://owasp.org/www-chapter-singapore/assets/presos/Deconstructing_the_Solarwinds_Supply_C
hain_Attack_and_Deterring_it_Honing_in_on_the_Golden_SAML_Attack_Technique.pdf

● https://owasp.org/www-chapter-singapore/assets/presos/Securing_your_APIs_-_OWASP_API_Top_
10_2019,_Real-life_Case.pdf

● https://owasp.org/www-chapter-singapore/assets/presos/Microservices%20Security%2C%20Contain
er%20Runtime%20Security%2C%20MITRE%20ATT%26CK%C2%AE%20%20for%20Kubernetes%
20(K8S)%20and%20Service%20Mesh%20for%20Security.pdf

● https://www.wired.com/story/what-is-zero-trust/

https://www.cncf.io/online-programs/cncf-member-webinar-security-in-the-world-of-service-meshes/
https://github.com/OWASP/www-chapter-singapore/raw/master/assets/presos/Securing_Multi_cloud_Portable_Tier_Microservices_Applications_A_live_demo_on_cloud_native_application_security_platforms.pdf
https://github.com/OWASP/www-chapter-singapore/raw/master/assets/presos/Securing_Multi_cloud_Portable_Tier_Microservices_Applications_A_live_demo_on_cloud_native_application_security_platforms.pdf
https://github.com/OWASP/www-chapter-singapore/raw/master/assets/presos/Securing_Multi_cloud_Portable_Tier_Microservices_Applications_A_live_demo_on_cloud_native_application_security_platforms.pdf
https://owasp.org/www-chapter-singapore/assets/presos/Deconstructing_the_Solarwinds_Supply_Chain_Attack_and_Deterring_it_Honing_in_on_the_Golden_SAML_Attack_Technique.pdf
https://owasp.org/www-chapter-singapore/assets/presos/Deconstructing_the_Solarwinds_Supply_Chain_Attack_and_Deterring_it_Honing_in_on_the_Golden_SAML_Attack_Technique.pdf
https://owasp.org/www-chapter-singapore/assets/presos/Securing_your_APIs_-_OWASP_API_Top_10_2019,_Real-life_Case.pdf
https://owasp.org/www-chapter-singapore/assets/presos/Securing_your_APIs_-_OWASP_API_Top_10_2019,_Real-life_Case.pdf
https://owasp.org/www-chapter-singapore/assets/presos/Microservices%20Security%2C%20Container%20Runtime%20Security%2C%20MITRE%20ATT%26CK%C2%AE%20%20for%20Kubernetes%20(K8S)%20and%20Service%20Mesh%20for%20Security.pdf
https://owasp.org/www-chapter-singapore/assets/presos/Microservices%20Security%2C%20Container%20Runtime%20Security%2C%20MITRE%20ATT%26CK%C2%AE%20%20for%20Kubernetes%20(K8S)%20and%20Service%20Mesh%20for%20Security.pdf
https://owasp.org/www-chapter-singapore/assets/presos/Microservices%20Security%2C%20Container%20Runtime%20Security%2C%20MITRE%20ATT%26CK%C2%AE%20%20for%20Kubernetes%20(K8S)%20and%20Service%20Mesh%20for%20Security.pdf
https://www.wired.com/story/what-is-zero-trust/

Reach Out

 https://www.linkedin.com/in/awnathan
nathan.mk.aw@gmail.com
https://nathanawmk.github.io/

https://www.linkedin.com/in/awnathan
mailto:nathan.mk.aw@gmail.com
https://nathanawmk.github.io/

Backup

Pixie - Instant Kubernetes observability with Pixie
Debug faster with code-level insights

SOURCE:
https://newrelic.com/platform/kubernetes-pixie
https://github.com/pixie-io/pixie

Pixie is an open source observability tool for Kubernetes applications. Use Pixie to view the high-level state
of your cluster (service maps, cluster resources, application traffic) and also drill-down into more detailed
views (pod state, flame graphs, individual full-body application requests).

Why Pixie?
Three features enable Pixie's magical developer experience:

Auto-telemetry: Pixie uses eBPF (Extended Berkeley Packet Filter, a kernel technology) to automatically
collect telemetry data such as full-body requests, resource and network metrics, application profiles, and
more. See the full list of data sources here.

In-Cluster Edge Compute: Pixie collects, stores and queries all telemetry data locally in the cluster. Pixie
uses less than 5% of cluster CPU, and in most cases less than 2%.

Scriptability: PxL, Pixie’s flexible Pythonic query language, can be used across Pixie’s UI, CLI, and client
APIs.

https://newrelic.com/platform/kubernetes-pixie
https://github.com/pixie-io/pixie

GNAP

https://github.com/ietf-wg-gnap/gnap-core-protocol

https://github.com/nathanawmk/oauth.xyz-java

https://github.com/ietf-wg-gnap/gnap-core-protocol
https://github.com/nathanawmk/oauth.xyz-java

Micro-segmentation Considerations

https://www.illumio.com/sites/default/files/Illumio_Infographic_How_to_Choose_Your_Segmentation_Strategy_2019_03.pdf

https://www.illumio.com/sites/default/files/Illumio_Infographic_How_to_Choose_Your_Segmentation_Strategy_2019_03.pdf

