Basic Pentesting on Ethereum
Blockchain

Suen C*w?n

- ‘/ \ 4 ‘;7.\7

‘r w kedm com/m/chun U uen/

Hui 2019

Blockchain as a stack

« other
chains

© Dr Suen Chun Hui 2019/

P2P Networking Layer - attacks

* networking and connectivity layer, similar to P2P overlay
networks

e node discovery (dynamic list of nodes to connect to)
e secure connection between nodes

e Can be attacked by DoS

» Protect against network level attacks such as man-in-
the-middle
and
eclipse attacks

» eclipse attack can be serious, if consensus(base layer)
Inherently assumes sufficient randomness of peer list or
peer connections

© Dr Suen Chun Hui 2019/

Base layer attack

e Base consensus mechanism(eg. PoW, PoS)

* 51% attack, attack on consensus protocol

 means the majority collude to attack other
participants

 affects everyone in network, *including
decentralized exchanges, autonomous smart

contracts, etc*
o Tnetwork size, drisk of 51% attack

© Dr Suen Chun Hui 2019/

Scalability layer - challenges

e improve overall scalability of chain (throughput, may
have side-effect on latency or commit time)

e using a 'divide and conquer' approach to split base
consensus in 2(or more) layers

e Techniques: DP0oS, Sharding

e Challenges — maintaining atomicity across layers
and shards

© Dr Suen Chun Hui 2019/

Privacy layer

e Known privacy techniques
e Mixing / Ring signatures
e Secure Multi-party computation
o Zero Knowledge proofs
* Weakness of ZKP techniques
e Snark — “Toxic waste” issue
e Other parameters: proof size, proof/verify speed

© Dr Suen Chun Hui 2019/

~

Logic layer - smart contract security

e non-turing complete language
 |lesser features
e | risk of security bug
e turing complete
* more features
e 1 risk fo security bug (eg. infinite loop)
e need more security checking tools

© Dr Suen Chun Hui 2019/

Client layer

e full vs light node
* full node keeps all data

e light node only keep hash of all blocks and not
content of block

* light node
e pulls data on-demand from full nodes

e light node is able to verify TX if data provided by full
node

© Dr Suen Chun Hui 2019/

Hui 2019

Why Smart Contract pentesting?

Bytecode (optionally contract mode) is public

Code execution (by miners) is remote,
decentralized and anonymous

Hackers are remote and anonymous

Security flaw has big loss (direct financial loss)
and no recourse (no centralized authority to
address loss, eg. police, bank, court)

© Dr Suen Chun Hui 2019/

Some concepts

GAS - transaction fee paid per transaction.
Calculated based on computation and storage
opcodes

Fallback function — allows a smart contract to
‘accept’ eth payment like a normal wallet address
and act upon it.

function () public external { .. }

© Dr Suen Chun Hui 2019/

Reentrancy Attacks

Early ethereum startup, bug in DAO
(decentralized autonomous organization) smart

contract
Caused 150M USD loss in ether
Deployed a hard fork to roll-back the attack

Ethereum’s DAO Forking Crisis: The
Bitcoin Perspective

© Dr Suen Chun Hui 201 9/

Reentrancy Attacks

Dangers of calling external contracts — can take over control flow.

mapping (address => uint) public balances;
function withdraw() public {
bool success;

bytes memory data;
//send ether back to sender address/callback fn.

(success, data) =
msg.sender.call.value(balances[msg.sender])("");

if (!success) {
revert("Withdraw failed");
}
//vulnerable-balance update 1s behind transfer call
balances[msg.sender] = 0;

© Dr Suen Chun Hui 201 9/

Reentrancy Attacks

Dangers of calling external contracts — can take over control flow.

mapping (address => uint) private balances;
— function withdraw() public {
bool success;

bytes memory data;
//send ether back to sender address/callback fn.

(success, data) =
msg.sender.call.value(balances[msg.sender])("");

if (!success) {
revert("Withdraw failed");

}

//vulnerable-balance update is behind transfer call
balances[msg.sender] = 0;

}
I)
| function () public external { < 4
1 — msg.sender.withdraw(); :
i } :
I i
e e e e e e e e e J

© Dr Suen Chun Hui 201 9/

Integer overflow/underflow

Dangers of calling external contracts — can take over control flow.

mapping (address => uint256) public balanceOf;

function transfer(address _to, uint256 _value) {
require(balanceOf[msg.sender] >= _value);
balanceOf[msg.sender] -= _value; //can overflow
balanceOf[_to] += _value; //can overflow

¥

© Dr Suen Chun Hui 201 9/

Parity Bug - poor deployment

Parent contract owner was uninitialized
e Allowed for random user to re-init

modifier only uninitialized { if (m_numOwners > @) throw; _; }
function initWallet(address[] _owners, uint _required, uint _daylimit)
only uninitialized {
initDaylimit(_daylimit);
initMultiowned(_owners, _required);

}
e selfdestruct() was accidentally called

The $280M Ethereum’s Parity bug.

A critical security vulnerability in Parity multi-sig wallet got
triggered on 6th November— paralyzing wallets created after the
20th July.

© Dr Suen Chun Hui 2019/

Other know attacks, tools

» Other attacks

e hitps://consensys.qithub.io/smart-contract-best-
practices/known attacks/

e Other reentrancy attacks
e Front-running (loss of market information)
e DoS attacks (network layer)

» Security tools:

e hitps://consensys.qithub.io/smart-contract-best-
practices/security tools/

e Code analyzers: mythril, oyente, etc
» Code coverage, linting

© Dr Suen Chun Hui 201 9/

Hui 2019

Check-effect-interaction rule

Do conditional checks first (eg. require()
Effect changes to your variables & data
Interact with external contracts

General rule for preventing re-entrancy attack

Do not rely on gas depletion to prevent re-
entrancy

© Dr Suen Chun Hui 2019/

openzeppelin

battle-tested library of reusable smart contracts

Install using npm
npm install openzeppelin-solidity

Can be integrated easily with truffle

import "openzeppelin-
solidity/contracts/token/ERC20/ERC20Mintable.sol";

contract SMUToken is ERC20Mintable {
string public constant name = "SMU Token";
string public constant symbol = "SMU";
uint8 public constant decimals = 18;

¥

© Dr Suen Chun Hui 2019/

openzeppelin

Modules:
e Token (ERC20, ERC721, ERC777)

Crowdsale
e Payment, escrow
e Math (prevent integer over/underflow)
e Introspection (ERC165, ERC1820)
e Cryptographic primitives
e elc

© Dr Suen Chun Hui 2019/

Published Code is not 100%

External AB
etherscan

of bytecode is not verified on

© Dr Suen Chun Hui 2019/

d v AY A

mart Co tract ﬁénté

Hui 2019

Re-entrancy hands-on

pentest_target.sol

Pentest_attack template.sol

. -
© Dr Suen Chun Hui 2019/

Solidity hints

Call function:

<contr var>.<mtd name>.value(<eth val>)(<mtd params);

Call function with payable eth:
<contr var>.<mtd name>(<mtd params>);

Get eth balance:

address(<contr var>).balance

Sender(tx caller) address:
msg.sender

Sender(tx caller) payable value:
msg.value

© Dr Suen Chun Hui 2019/

Re-entrancy hands-on (solution)

pentest_attacker.sol

© Dr Suen Chun Hui 2019/

