
Scale Your Security
by Embracing Secure Defaults and Eliminating

Bug Classes

1

Grayson Hardaway | r2c.dev

Slides are posted at semgrep.dev

whois
me:
Grayson Hardaway, sr. security
engineer @ r2c
Formerly: U.S. Department of Defense

r2c:
We’re an SF based static analysis
startup on a mission to profoundly
improve software security and
reliability.

2

1. Why Bug-Finding Isn't The Answer

2. How to Eradicate Vulnerability Classes

3. Tools & Techniques To Make It Real

3

Outline

1. Why Bug-Finding Isn’t The Answer

4

In many companies:
● Security teams can hard block engineering rarely, if

ever
● Security testing must be continuous, not point in

time
● Focus on building, not just breaking
● Embedded or partnered closely with dev teams

We need to re-visit our prior assumptions 5

Software Development has Changed
...thus Security Teams must too

6

Massive Shifts in Tech and Security

Before After

Waterfall development Agile development

Dev, Ops DevOps

On prem Cloud

7

Massive Shifts in Tech and Security

Before After

Waterfall development Agile development

Dev, Ops DevOps

On prem Cloud

Finding vulnerabilities Secure defaults and
invariants

A property that must either
always or
never be true

Invariant

No context
needed to
make a decision

==No operational time
for the security
team

Key
Insight

8

==

Quiz: Does this app have XSS?

Icons by Icons8 9

Context?
●HTML
●HTML attribute
●JavaScript
● ...

Quiz: Does this app have XSS?

Input filtered?

Data
processed
before sent to
user?

How is it
stored?
(field types,
constraints)

DB type?

What does user control?
Structure of data?

Icons by Icons8 10

Context?
●HTML
●HTML attribute
●JavaScript
● ...

Quiz: Does this app have XSS?

Input filtered?

Data
processed
before sent to
user?

How is it
stored?
(field types,
constraints)

DB type?

What does user control?
Structure of data?

Icons by Icons8

Invariant: Frontend is React, banned dangerouslySetInnerHTML

11

Context?
●HTML
●HTML attribute
●JavaScript
● ...

Quiz: Does this app have XSS?

Input filtered?

Data
processed
before sent to
user?

How is it
stored?
(field types,
constraints)

DB type?

What does user control?
Structure of data?

Icons by Icons8

Invariant: Frontend is React, banned dangerouslySetInnerHTML

12

Quiz: Does this app have
RCE?

Icons by Icons8 13

Does the app?
●Deserialize data
●Run shell commands
●Mix data and code
○eval(), exec()
○Metaprogramming

Quiz: Does this app have
RCE?

Input filtered? How is it
stored?
(field types,
constraints)

What does user control?
Structure of data?

Icons by Icons8 14

Does the app?
●Deserialize data
●Run shell commands
●Mix data and code
○eval(), exec()
○Metaprogramming

Quiz: Does this app have
RCE?

Input filtered? How is it
stored?
(field types,
constraints)

What does user control?
Structure of data?

Icons by Icons8

Ban: exec(), eval(), shell exec, deserialization (objects, YAML, XML, JSON)

15

Does the app?
●Deserialize data
●Run shell commands
●Mix data and code
○eval(), exec()
○Metaprogramming

Quiz: Does this app have
RCE?

Input filtered? How is it
stored?
(field types,
constraints)

What does user control?
Structure of data?

Icons by Icons8

Ban: exec(), eval(), shell exec, deserialization (objects, YAML, XML, JSON)

16

Write proof of
concept
exploit

Task vs Effort
Required

E
ffo

rt
 R

eq
u

ire
d

(c

h
u

)

Task

Detect use
of
(in)secure
library

Find
potential
bug

Confirm it’s
a real bug

17

Detecting (lack of) use of
secure defaults

is much easier than

finding bugs

18

#Woke
Preventing classes of
vulnerabilities

#Broke
Finding every vulnerability

19

Your Internal Dialogue?

● “All you’ve shown me is some
hand-wavy diagrams”

●The security industry has focused
on bug finding for decades
○ SAST, DAST, pen tests, bug bounty

20

We Come Bearing Gifts: Enabling Prod Security w/
Culture & Cloud
 AppSec Cali ‘18, Patrick Thomas, Astha Singhal

21

A Pragmatic Approach for Internal Security
Partnerships
AppSec Cali ‘19, Scott Behrens, Esha Kanekar

22

How Valuable Can Banning
Functions Be?

41% of vulnerability
reduction from XP →
Vista from banning
strcpy and friends

Analysis of 63 buffer-related security bugs that
affect Windows XP, Windows Server 2003 or
Windows 2000 but not Windows Vista: 82%
removed through SDL process

●27 (43%) found through use of SAL
(Annotations)

●26 (41%) removed through banned API
removal

"Security Improvements in Windows Vista", Michael Howard

23

From the Microsoft Security Response Center blog:

● “Tools and guidance are demonstrably not preventing
this class of vulnerabilities; memory safety issues have
represented almost the same proportion of
vulnerabilities assigned a CVE for over a decade.”

Tools and Training Help, but are Not
Enough

24

● “It’s unreasonable to expect any
developer to be an expert in all
these subjects, or to constantly
maintain vigilance when writing
or reviewing code.

●A better approach is to handle
security and reliability in
common frameworks,
languages, and libraries. Ideally,
libraries only expose an interface
that makes writing code with
common classes of security
vulnerabilities impossible.”

Google:

Building Secure and Reliable Systems, by Google
25

"We invest heavily in
building frameworks that
help engineers prevent and
remove entire classes of
bugs when writing code."

Facebook:

Designing Security For Billions by Facebook

26

Framework / tech choices matter

●Mitigate classes of vulnerabilities

Examples:

●Using modern web frameworks
●DOMPurify - output encoding
● re2 - regexes
● tink - crypto

“But I’m not
Google”

Web security before
 modern frameworks

27

2. How to Eradicate Vulnerability
Classes

28

Compounding Effects of Killing Bug Classes

29

1. Select a vulnerability class
2.Find/prevent it at scale
3.Select a safe pattern and make it the default
4.Train developers to use the safe pattern
5.Use tools to enforce the safe pattern

How to Eradicate Vulnerability Classes

30

Common selection criteria

Bug classes that are:

1. The most prevalent
2. The highest impact / risk
3. Easiest to tackle (organizationally, technically)
4.Organizational priorities
5. Weighted: f(prevalent, severe, feasible, org)

1. Select a vulnerability class

31

Vulnerability Management (more)

Know your current state and if your future efforts actually work

1. Select a vulnerability class

32

Vulnerability Management (more)

Know your current state and if your future efforts actually work

Track:
●Risk, Severity, Impact
●Vuln class - access controls, XSS, SQLi, open redirect, …
○ Create a taxonomy (e.g. OWASP Top 10, Bugcrowd’s VRT)
○ Aim for 20-40 categories (should have different root cause/fix)

●PR introducing / fixing the issue
●Relevant code base (and team/org)
●Root cause
●What source found this? (DAST, SAST, pen test, bug bounty, …)
●Mitigating factors

1. Select a vulnerability class

33

Building the List of Prior Vulnerabilities to Review

When your vuln tracking has been inconsistent

Common Sources

●JIRA/GitHub issues tagged “security”
●Create a list of security-relevant keywords
○ Search pull/merge requests, issue tracker, git commit history
○ git log --grep “xss”

●Security tool reports (SAST, DAST, …)
●Pen test reports, bug bounty submissions
●Ask development, ops, and security teams for examples

1. Select a vulnerability class

34

Building the List of Prior Vulnerabilities to Review

When your vuln tracking has been inconsistent

Common Sources

●JIRA/GitHub issues tagged “security”
●Create a list of security-relevant keywords
○ Search pull/merge requests, issue tracker, git commit history
○ git log --grep “xss”

●Security tool reports (SAST, DAST, …)
●Pen test reports, bug bounty submissions
●Ask development, ops, and security teams for examples
●Use Google! Use framework documentation!

1. Select a vulnerability class

35

Going Forward
Fully analyzing ad hoc
historical data may not be
worth the time

Now: create and document
a lightweight, standardized
process
● Make your life easier

next time

Slice and Dice
● Group by vulnerability class
● Group by source (DAST, SAST, BB…)
● Weight by severity/risk/impact

1. Select a vulnerability class
Data Driven Bug Bounty by @arkadiyt

36

Slice and Dice
● Group by vulnerability class
● Group by source (DAST, SAST, BB…)
● Weight by severity/risk/impact

Choose a bug class and review the fixes
●What did the vulnerable code look like?
●What did the fix look like?

What trends do you see?
● Good: vulnerable code looks similar
● Bad: all buggy code looks different

1. Select a vulnerability class
Data Driven Bug Bounty by @arkadiyt

37

1. Select a vulnerability class

38

Ideal World
Choose a vulnerability class that is:
● Widespread across

teams/repos
● High Risk
● Feasible to get devs to fix
● Aligns with company priorities
● Always broken in the same

way

Pick one and eliminate it!

39

1. Select a vulnerability class

Different weaknesses require different approaches

2. Find/prevent at Scale

40

Problem

Big picture, architectural flaws

Cloud misconfigurations

Complex business logic bugs

Protect vulns until they’re
patched

Known good/known bad code

Security Approach

Threat Modeling

IaaC scanning, Cartography,
BB

Pen tests, bug bounty

WAF, RASP

Lightweight static analysis

●Based on internal coding guidelines, standards, your expertise, ...

3. Select a Safe Pattern and Make it the Default

41

3. Select a Safe Pattern and Make it the Default
Update all internal coding guidelines (security & dev)
●READMEs, developer documentation, wiki pages, FAQs

○Training slides, onboarding presentations, …
●Explain why these patterns exist and how to use them

Work with developer productivity team
●Secure version should have an even better dev UX than the old way

○Potentially: build a secure library. Make the insecure pattern hard to use while still letting
devs go fast

○How can we increase dev productivity and security?
● Integrate security at the right points (e.g. new project starter templates)

to get automatic, widespread adoption
● “Hitch your security wagon to dev productivity.” - Astha Singhal

42

Making Communications Successful

●What and why something is insecure should be clear
○Use terms developers understand, no security jargon

●Convey impact in terms devs care about
○Risk to the business, damaging user trust, reliability, up time

●How to fix it should be concise and clear
○Link to additional docs and resources with more info
○Have a dedicated #AppSec chat channel for further questions

4. Train Developers to Use the Safe Pattern

43

Don’t Run with Scissors: How to standardize how
developers use dangerous aspects of your framework by
Morgan Roman

44

How to Engage: Some Options
●During developer onboarding
●Lead educational brown bag sessions over lunch
● Internal CTFs
●Security champions
●When in-person interaction is feasible again

○Grab lunch with dev teams and/or schedule a happy hour
○Have candy on desks by the security team

4. Train Developers to Use the Safe Pattern

45

Use lightweight static analysis (grep, linting) to ensure the safe patterns are
used

5. Use Tools to Enforce the Safe Pattern

46

3. Tools & Techniques To Make It
Real

47

How to Eradicate Vulnerability Classes

48

1. Evaluate which vulnerability class to focus on
2.Determine the best approach to find/prevent it

at scale

→ How to set up continuous code scanning

1. Select a safe pattern and make it the default
2.Train developers to use the safe pattern
3.Use tools to enforce the safe pattern

→ Checking for escape hatches in secure
frameworks

AppSec USA:

Put Your Robots to Work: Security Automation at Twitter | ‘12

Providence: rapid vuln prevention (blog, code) | '15

Cleaning Your Applications’ Dirty Laundry with Scumblr (code) | '16

Scaling Security Assessment at the Speed of DevOps | '16

SCORE Bot: Shift Left, at Scale! | ‘18

Continuous Scanning: Related Work

49

Salus: How Coinbase Sales Security Automation (blog, code)
 DevSecCon London ’18

Orchestrating Security Tools with AWS Step Functions (slides)
DeepSec '18

A Case Study of our Journey in Continuous Security (code)
DevSecCon London ‘19

Dracon- Knative Security Pipelines (code)
Global AppSec Amsterdam ‘19

Continuous Scanning: Related Work

50

Continuous Scanning: Best Practices

Two Scanning Workflows
audit (sec team, visibility), blocking (devs, pls fix)

Scan Fast (<5min)
feedback while context is fresh
can do longer / more in depth scans daily or weekly

Scan Pull Requests
every commit is too noisy, e.g. WIP commits

Make Adjustment Easy
Make it cheap to add/remove tools and new rules

51

Don't come in last!
Security checks should not be the slowest check blocking developer from
merging

Scan Fast

52

Tell me as soon as
possible, ideally in
the editor.

Also enforce in CI so
that it can't be
ignored.

Scan Early

53

Make security fixes fast and easy.
Even an imperfect suggestion is better than nothing!

Try: https://semgrep.dev/ievans:tlsautofix

Autofix

54

Continuous Scanning: Best Practices
Clear, actionable, with link
to more info

Show tool findings within dev systems
(e.g. on PR as a comment)

Track & evict low signal checks:
keep only +95% true positives
Otherwise causes ill will with devs + too much security team
operational cost

Capture metrics about check types,
scan runtime, and false positive rates

(Screenshot from Google's, Tricorder: Building a Program Analysis Ecosystem)

55

If we use secure frameworks that maintain
invariants, all we need to do is detect the
functions that let you "escape" from those
invariants. For instance:

●dangerouslySetInnerHTML
●exec
●rawSQL(...)
● myorg.make_superuser

Continuously Finding: Escape Hatches

56

●Grep

○Pro: easy to use, interactive, fast
○Con: line-oriented, mismatch with program structure (ASTs)

●Code-Aware Linter

○Pro: robust, precise (handles whitespace, comments, …)
○Con: Each parser represents ASTs differently; have to learn each syntax

How to find them?

57

What we do

58

1. Select a vulnerability class

● r2c is young
○ Two (2) primary codebases
○ Limited vulnerability history

● Prioritize based on common problems for the type of application:
○ Web application → XSS
○ Command line interface → Code and Command injection

59

2. Prevent it at scale

60

3. Select a safe pattern and make it the default

61

62

https://semgrep.dev/explore

https://semgrep.dev/docs/cheat-sheets/django-xss/

Making Secure Defaults Easier

63

4. Train developers to use the safe pattern +
5. Use tools to enforce the safe pattern

64

65

BONUS: Quietly monitor new policies

66

●Secure defaults are the best way to scalably raise your security bar
○ Not finding bugs (bug whack-a-mole)

●Killing bug classes makes your AppSec team more leveraged
●Define safe pattern → educate / roll out → enforce continuously
○ Fast & lightweight (e.g. semgrep), focus on dev UX

Conclusion

Grayson Hardaway
grayson@r2c.dev

Slides:

67

